Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31792010

RESUMO

Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureusin vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner.IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


Assuntos
Alginatos/metabolismo , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Biofilmes , Coinfecção/microbiologia , Humanos , Interações Microbianas , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética
2.
Br J Nutr ; 117(9): 1244-1256, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28643618

RESUMO

Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in ß-hydroxyisovaleroylcarnitine and 18-fold increase in ß-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts.


Assuntos
Neoplasias Colorretais , Fibras na Dieta/administração & dosagem , Fezes/química , Manipulação de Alimentos , Redes e Vias Metabólicas/efeitos dos fármacos , Oryza , Humanos
3.
Nutr Cancer ; 68(8): 1269-1280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27689688

RESUMO

Consumption of navy beans (NB) and rice bran (RB) have been shown to inhibit colon carcinogenesis. Given the overall poor diet quality in colorectal cancer (CRC) survivors and low reported intake of whole grains and legumes, practical strategies to increase consumption merit attention. This study determined feasibility of increasing NB or RB intake in CRC survivors to increase dietary fiber and examined serum inflammatory biomarkers and telomere lengths. Twenty-nine subjects completed a randomized controlled trial with foods that included cooked NB powder (35 g/day), heat-stabilized RB (30 g/day), or no additional ingredient. Fasting blood, food logs, and gastrointestinal health questionnaires were collected. The amount of NB or RB consumed equated to 4-9% of subjects' daily caloric intake and no major gastrointestinal issues were reported with increased consumption. Dietary fiber amounts increased in NB and RB groups at Weeks 2 and 4 compared to baseline and to control (P ≤ 0.01). Telomere length correlated with age and HDL cholesterol at baseline, and with improved serum amyloid A (SAA) levels at Week 4 (P ≤ 0.05). This study concludes feasibility of increased dietary NB and RB consumption to levels associated with CRC chemoprevention and warrants longer-term investigations with both foods in high-risk populations that include cancer prevention and control outcomes.


Assuntos
Fibras na Dieta/farmacologia , Inflamação/dietoterapia , Oryza , Phaseolus , Idoso , Biomarcadores/sangue , Sobreviventes de Câncer , HDL-Colesterol/sangue , Neoplasias Colorretais/complicações , Suplementos Nutricionais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Amiloide A Sérica/análise , Homeostase do Telômero
4.
Carcinogenesis ; 36 Suppl 1: S19-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106138

RESUMO

Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/administração & dosagem , Senescência Celular/efeitos dos fármacos , Substâncias Perigosas/efeitos adversos , Animais , Exposição Ambiental/efeitos adversos , Humanos
5.
Carcinogenesis ; 36 Suppl 1: S203-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106140

RESUMO

Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.


Assuntos
Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/etiologia
6.
Carcinogenesis ; 36 Suppl 1: S232-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106141

RESUMO

An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.


Assuntos
Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/imunologia , Neoplasias/induzido quimicamente , Neoplasias/imunologia , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Neoplasias/etiologia , Risco
7.
Carcinogenesis ; 36 Suppl 1: S111-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26002081

RESUMO

An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-ß, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression.


Assuntos
Substâncias Perigosas/efeitos adversos , Substâncias Perigosas/imunologia , Evasão da Resposta Imune/efeitos dos fármacos , Vigilância Imunológica/efeitos dos fármacos , Neoplasias/induzido quimicamente , Neoplasias/imunologia , Animais , Meio Ambiente , Humanos , Evasão da Resposta Imune/imunologia , Vigilância Imunológica/imunologia , Neoplasias/etiologia
8.
Carcinogenesis ; 36 Suppl 1: S160-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106136

RESUMO

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Assuntos
Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Microambiente Tumoral/efeitos dos fármacos , Animais , Carcinogênese/induzido quimicamente , Humanos , Neoplasias/induzido quimicamente
9.
Carcinogenesis ; 36 Suppl 1: S2-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106139

RESUMO

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.


Assuntos
Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Carcinogenesis ; 36 Suppl 1: S184-202, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106137

RESUMO

One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Neovascularização Patológica/induzido quimicamente , Animais , Humanos
11.
Carcinogenesis ; 36 Suppl 1: S128-59, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106135

RESUMO

The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.


Assuntos
Carcinógenos Ambientais/efeitos adversos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Animais , Progressão da Doença , Exposição Ambiental/efeitos adversos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
12.
Carcinogenesis ; 36 Suppl 1: S38-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106143

RESUMO

The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.


Assuntos
Carcinógenos Ambientais/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos
13.
Carcinogenesis ; 36 Suppl 1: S61-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106144

RESUMO

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Instabilidade Genômica/efeitos dos fármacos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
14.
Carcinogenesis ; 36 Suppl 1: S89-110, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106145

RESUMO

Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Morte Celular/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Homeostase/efeitos dos fármacos , Humanos
15.
Carcinogenesis ; 36 Suppl 1: S254-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106142

RESUMO

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
16.
Environ Sci Technol ; 48(24): 14677-85, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25365583

RESUMO

The objective of this study was to determine the background exposures to pesticides as detected in urine from 21 healthy companion dogs in Northern Colorado. A panel of 301 pesticides was used to screen urine samples collected from dogs using an established ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS) platform. Canine food intakes were controlled for one month on diets that were also screened for pesticide contents. Fifteen distinct pesticides were detected in urine. The most frequently detected compounds in canine urine samples collected over a 1 month period were atrazine, fuberidazole, imidacloprid, terbumeton, and clopyralid. Fuberidazole was the only pesticide detected in both the diets and urine. Companion dogs develop many similar chronic diseases as humans and represent a relevant model for biomonitoring combinations of environmental pesticide exposures, as well as for evaluating the potential relationships between environmental exposures and disease risk.


Assuntos
Exposição Ambiental/análise , Praguicidas/urina , Animais , Atrazina/urina , Benzimidazóis/análise , Benzimidazóis/urina , Cromatografia Líquida/métodos , Colorado , Cães , Ingestão de Alimentos , Monitoramento Ambiental/métodos , Feminino , Masculino , Espectrometria de Massas , Praguicidas/análise , Animais de Estimação/urina , Espectrometria de Massas em Tandem/métodos
17.
Rice (N Y) ; 10(1): 24, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28547736

RESUMO

BACKGROUND: Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. RESULTS: This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. CONCLUSION: Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this metabolite network may occur via additive and synergistic effects between compounds in the food matrix.

18.
Glob Pediatr Health ; 4: 2333794X17694231, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28345013

RESUMO

Background: Navy beans and rice bran demonstrate efficacy to regulate serum cholesterol in hypercholesterolemic adults; however, the cardiovascular disease (CVD) protective properties of these foods in children are unknown and merit investigation. Objective: The objectives were to determine whether cooked navy bean powder (NBP) and/or heat-stabilized rice bran (RB) supplementation is tolerable, improves dietary fiber intake in children, and modulates lipid profiles. Methods: Children aged 8 to 13 years at risk for CVD due to abnormal lipids were recruited. Elevated cholesterol levels were defined as total cholesterol ≥180 mg/dL and high-density lipoprotein (HDL) <60 mg/dL; low-density lipoprotein (LDL) ≥100 mg/dL and HDL <60 mg/dL; or non-HDL >100 mg/dL and HDL <60 mg/dL. Participants completed a pilot 4-week, randomized controlled, 4-arm dietary intervention. They consumed study-provided muffins or a smoothie daily that included 0 g NBP or RB (control), 17.5 g NBP, 15 g RB, or a combination 9 g NBP + 8 g RB. Fasting blood was collected at baseline and week 4. Participants also completed 3-day food logs and gastrointestinal health questionnaires. RESULTS: Thirty-eight children completed the trial (n = 9 control, n = 10 NBP, n = 9 RB, and n = 10 NBP + RB groups). Only 3 participants withdrew due to noncompliance of required food consumption. Participants in the intervention groups significantly increased intake of NBP and RB at week 4 (p≤.01). The NBP and NBP + RB groups increased total fiber intake from baseline to week 4 (p=.02 and p=<.01, respectively). HDL-cholesterol was higher in NBP-group participants compared to control at week 4 (P = .02). Conclusion: Increasing NBP and/or RB intake is tolerable for children, and our findings suggest higher daily intakes are needed for a longer duration to induce favorable changes across multiple serum lipid parameters.

19.
Cancer Metab ; 4: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27275383

RESUMO

BACKGROUND: Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool. In this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients undergoing colonic resection. Metabolic pathway analyses further revealed relationships between complex networks of metabolites. METHODS: Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm proximal to the tumor, and stool. Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). All of the library standard identifications were confirmed and further analyzed via MetaboLync(TM) for metabolic network interactions. RESULTS: There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices. Nineteen metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort. Glucose-6-phosphate and fructose-6-phosphate demonstrated 0.64-fold and 0.75-fold lower expression in CRC compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and adenylosuccinate had 2.68-fold and 1.88-fold higher relative abundance in CRC. Eleven of the 19 metabolites had not previously been reported for CRC relevance. Metabolic pathway analysis revealed significant perturbations of short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and pyruvate metabolism. In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of those stool metabolites were also detected in tissue. This CRC and stool metabolome investigation identified novel metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously reported CRC metabolome studies, and showed networks for metabolic pathway aberrations. In addition, we found differences between the CRC and stool metabolomes. CONCLUSIONS: Stool metabolite profiles were limited for direct associations with CRC and adjacent mucosa, yet metabolic pathways were conserved across both matrices. Larger patient-matched CRC, adjacent non-cancerous colonic mucosa, and stool cohort studies for metabolite profiling are needed to validate these small molecule differences and metabolic pathway aberrations for clinical application to CRC control, treatment, and prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA