Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Med Princ Pract ; 29(5): 412-421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353856

RESUMO

OBJECTIVE: The element iodine is an essential nutrient utilized by the thyroid glands, and deficiency of this element has been linked to reproductive failures. Iodide transporters are also present in reproductive tissues and cells of embryonic origin such as the endometrium and trophoblasts, respectively. The aim of this study is to understand if levels of iodide transporters are linked to pregnancy outcomes. SUBJECTS AND METHODS: RNA derived from endometrial biopsies from controls or women with recurrent reproductive failures was analyzed utilizing RT-PCR and targeted RNASeq. RESULTS: When compared to controls, women with 2 or more reproductive failures had a significant increase (>5 fold) in mRNA levels of the iodine transporters NIS and PENDRIN, but not thyroglobulin when probed vis RT-PCR. Targeted RNASeq analysis confirmed these findings when another group of patients were analyzed. CONCLUSION: These findings suggest possible abnormal iodine metabolism and a deficiency of iodine in endometrial tissues from some of the women with reproductive failures. We hypothesize from these findings that inorganic iodide and/or iodine is required for optimal cellular function in reproductive tissues, and that iodide transporters may potentially be used as a marker for infertility or for probing potential localized iodine deficiency that may not present in a typical thyroid panel analysis.


Assuntos
Aborto Espontâneo/fisiopatologia , Endométrio/citologia , Iodo/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Adulto , Biomarcadores , Transferência Embrionária , Feminino , Humanos , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportadores de Sulfato/biossíntese , Simportadores/biossíntese , Tireoglobulina/biossíntese
2.
Hum Mol Genet ; 22(16): 3269-82, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595884

RESUMO

Glucocorticoids are vital for the structural and functional maturation of foetal organs, yet excessive foetal exposure is detrimental to adult cardiovascular health. To elucidate the role of glucocorticoid signalling in late-gestation cardiovascular maturation, we have generated mice with conditional disruption of glucocorticoid receptor (GR) in cardiomyocytes and vascular smooth muscle cells using smooth muscle protein 22-driven Cre recombinase (SMGRKO mice) and compared them with mice with global deficiency in GR (GR(-/-)). Echocardiography shows impaired heart function in both SMGRKO and GR(-/-) mice at embryonic day (E)17.5, associated with generalized oedema. Cardiac ultrastructure is markedly disrupted in both SMGRKO and GR(-/-) mice at E17.5, with short, disorganized myofibrils and cardiomyocytes that fail to align in the compact myocardium. Failure to induce critical genes involved in contractile function, calcium handling and energy metabolism underpins this common phenotype. However, although hearts of GR(-/-) mice are smaller, with 22% reduced ventricular volume at E17.5, SMGRKO hearts are normally sized. Moreover, while levels of mRNA encoding atrial natriuretic peptide are reduced in E17.5 GR(-/-) hearts, they are normal in foetal SMGRKO hearts. These data demonstrate that structural, functional and biochemical maturation of the foetal heart is dependent on glucocorticoid signalling within cardiomyocytes and vascular smooth muscle, though some aspects of heart maturation (size, ANP expression) are independent of GR at these key sites.


Assuntos
Coração Fetal/crescimento & desenvolvimento , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Animais , Corticosterona/sangue , Corticosterona/fisiologia , Coração Fetal/fisiologia , Coração/embriologia , Coração/fisiologia , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/embriologia , Músculo Liso Vascular/metabolismo , Contração Miocárdica , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miofibrilas/ultraestrutura
3.
PLoS Genet ; 7(12): e1002404, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22216009

RESUMO

There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover.


Assuntos
Glomerulonefrite/genética , Homeostase/genética , Insuficiência de Múltiplos Órgãos/genética , Proteínas WT1/fisiologia , Animais , Atrofia/genética , Atrofia/patologia , Linhagem da Célula/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Glomerulonefrite/patologia , Gônadas/embriologia , Gônadas/metabolismo , Gônadas/patologia , Hematopoese/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Glomérulos Renais/embriologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Insuficiência de Múltiplos Órgãos/patologia , Pâncreas Exócrino/embriologia , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Podócitos/metabolismo , Podócitos/patologia , Baço/embriologia , Baço/metabolismo , Baço/patologia , Tamoxifeno/farmacologia , Proteínas WT1/genética
4.
Hum Mol Genet ; 20(5): 917-26, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21138943

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUTs) are common disorders of human development affecting the renal parechyma, renal pelvis, ureter, bladder and urethra; they show evidence of shared genetic aetiology, although the molecular basis of this remains unknown in the majority of cases. Breakpoint mapping of a de novo, apparently balanced, reciprocal translocation associated with bilateral renal agenesis has implicated the gene encoding the nuclear steroid hormone receptor ESRRG as a candidate gene for CAKUT. Here we show that the Esrrg protein is detected throughout early ureteric ducts as cytoplasmic/sub-membranous staining; with nuclear localization seen in developing nephrons. In 14.5-16.5 dpc (days post-conception) mouse embryos, Esrrg localizes to the subset of ductal tissue within the kidney, liver and lung. The renal ductal expression becomes localized to renal papilla by 18.5 dpc. Perturbation of function was performed in embryonic mouse kidney culture using pooled siRNA to induce knock-down and a specific small-molecule agonist to induce aberrant activation of Esrrg. Both resulted in severe abnormality of early branching events of the ureteric duct. Mouse embryos with a targeted inactivation of Esrrg on both alleles (Esrrg(-/-)) showed agenesis of the renal papilla but normal development of the cortex and remaining medulla. Taken together, these results suggest that Esrrg is required for early branching events of the ureteric duct that occur prior to the onset of nephrogenesis. These findings confirm ESRRG as a strong candidate gene for CAKUT.


Assuntos
Medula Renal/embriologia , Receptores de Estrogênio/metabolismo , Ureter/embriologia , Ureter/metabolismo , Animais , Anormalidades Congênitas/embriologia , Anormalidades Congênitas/genética , Anormalidades Congênitas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/anormalidades , Rim/embriologia , Rim/metabolismo , Nefropatias/congênito , Medula Renal/metabolismo , Camundongos , Camundongos Knockout , Organogênese , Receptores de Estrogênio/genética
5.
Hum Mol Genet ; 19(6): 1119-28, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20056676

RESUMO

Collagen type IV is the major structural component of the basement membrane and COL4A1 mutations cause adult small vessel disease, familial porencephaly and hereditary angiopathy with nephropathy aneurysm and cramps (HANAC) syndrome. Here, we show that animals with a Col4a1 missense mutation (Col4a1(+/Raw)) display focal detachment of the endothelium from the media and age-dependent defects in vascular function including a reduced response to nor-epinephrine. Age-dependent hypersensitivity to acetylcholine is abolished by inhibition of nitric oxide synthase (NOS) activity, indicating that Col4a1 mutations affect vasorelaxation mediated by endothelium-derived nitric oxide (NO). These defects are associated with a reduction in basal NOS activity and the development of heightened NO sensitivity of the smooth muscle. The vascular function defects are physiologically relevant as they maintain in part the hypotension in mutant animals, which is primarily associated with a reduced red blood cell volume due to a reduction in red blood cell number, rather than defects in kidney function. To understand the molecular mechanism underlying these vascular defects, we examined the deposition of collagen type IV in the basement membrane, and found it to be defective. Interestingly, this mutation also leads to activation of the unfolded protein response. In summary, our results indicate that mutations in COL4A1 result in a complex vascular phenotype encompassing defects in maintenance of vascular tone, endothelial cell function and blood pressure regulation.


Assuntos
Vasos Sanguíneos/fisiopatologia , Colágeno Tipo IV/genética , Volume de Eritrócitos/fisiologia , Hipotensão/sangue , Hipotensão/fisiopatologia , Mutação/genética , Animais , Animais Recém-Nascidos , Vasos Sanguíneos/enzimologia , Vasos Sanguíneos/patologia , Vasos Sanguíneos/ultraestrutura , Hemorragia Cerebral/sangue , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , GMP Cíclico/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Homeostase/efeitos dos fármacos , Hipotensão/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Músculo Liso Vascular/ultraestrutura , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
6.
Liver Int ; 31(2): 254-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21143581

RESUMO

BACKGROUND: Human embryonic stem cells (hESCs) can be efficiently differentiated to hepatocyte-like cells (HLCs) in vitro and demonstrate many of the functions and gene expression found in the adult liver. AIMS: In this study, we assess the therapeutic value of HLCs in long-term cell-based therapies in vivo. METHODS: hESC-derived HLCs were injected into the spleen of acutely injured NODscid(IL-2Rγ) null mice and analysed at various time points post-transplantation up to 3 months. RESULTS: Large clusters of human cells engrafted in the spleen after 3 days and had expanded considerably by 31 days. At these time points, we identified human cells expressing parenchymal hepatocyte markers, exhibiting biliary duct-like structures and expressing myofibroblast markers. Three months after transplantation, we could detect human HLCs that were positive for albumin and CK18 by immunostaining and human DNA by fluorescent in situ hybridisation. Moreover, we could detect secretion of human serum albumin by enzyme-linked immunoabsorbant assay. CONCLUSIONS: We observed the persistence, engraftment and function of HLCs in vivo up to 3 months post-translation; however, all murine recipients developed large splenic and liver tumours that contained endodermal and mesodermal cell types. Although our studies demonstrate that hESC-derived HLCs have the potential to play an important role in cell-based therapies, current methodologies and transplantation strategies require substantial refinement before they can be deployed safely.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Baço/citologia , Animais , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Albumina Sérica/análise , Transplante de Células-Tronco
7.
DNA Repair (Amst) ; 8(5): 664-71, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19264557

RESUMO

Topical application of thymidine dinucleotides (pTpT) provides some protection against the effects of UV on the skin, however, many details of the protective mechanism have yet to be elucidated. We have used mice with an epidermis-specific knockout for the nucleotide excision repair gene, Ercc1, to investigate the mechanisms of protection. pTpT offered no protection against the pronounced UV-induced short-term erythema and skin thickening responses that are characteristic of DNA repair-deficient skin. It also had no effect on UV-induced apoptosis in Ercc1-deficient cultured keratinocytes. However, in these short-term experiments in both skin and keratinocyte culture pTpT did cause a slight reduction in proliferation. pTpT application during a chronic UV irradiation protocol provided some protection from UVB-induced skin carcinogenesis in epidermis-specific Ercc1 knockout mice. The median tumour free survival time was increased in the pTpT-treated group and treated animals had fewer tumours. In addition, pTpT-treated animals developed fewer large inwardly growing skin lesions than untreated animals. Furthermore, the proliferation response was reduced in chronically irradiated, non-lesional pTpT-treated skin. We conclude that cancer protection by pTpT in our mice is not modulated by an upregulation of DNA repair, as protection appears to be independent of a functional nucleotide excision repair pathway. We hypothesise instead that protection by pTpT is due to a reduction in epidermal proliferation.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Timidina/administração & dosagem , Raios Ultravioleta/efeitos adversos , Animais , Apoptose/efeitos da radiação , Western Blotting , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Dano ao DNA , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/efeitos da radiação , Eritema/metabolismo , Eritema/patologia , Eritema/prevenção & controle , Feminino , Técnicas Imunoenzimáticas , Integrases/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Neoplasias Induzidas por Radiação/metabolismo , Neoplasias Induzidas por Radiação/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Irradiação Corporal Total
8.
Mol Endocrinol ; 23(4): 529-38, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19147700

RESUMO

We have generated a humanized double-reporter transgenic rat for whole-body in vivo imaging of endocrine gene expression, using the human prolactin (PRL) gene locus as a physiologically important endocrine model system. The approach combines the advantages of bacterial artificial chromosome recombineering to report appropriate regulation of gene expression by distant elements, with double reporter activity for the study of highly dynamic promoter regulation in vivo and ex vivo. We show first that this rat transgenic model allows quantitative in vivo imaging of gene expression in the pituitary gland, allowing the study of pulsatile dynamic activity of the PRL promoter in normal endocrine cells in different physiological states. Using the dual reporters in combination, dramatic and unexpected changes in PRL expression were observed after inflammatory challenge. Expression of PRL was shown by RT-PCR to be driven by activation of the alternative upstream extrapituitary promoter and flow cytometry analysis pointed at diverse immune cells expressing the reporter gene. These studies demonstrate the effective use of this type of model for molecular physiology and illustrate the potential for providing novel insight into human gene expression using a heterologous system.


Assuntos
Expressão Gênica , Genes Reporter/genética , Prolactina/genética , Regiões Promotoras Genéticas , Ratos Transgênicos , Animais , Linhagem Celular , Estrogênios/metabolismo , Feminino , Humanos , Lipopolissacarídeos/imunologia , Masculino , Hipófise/citologia , Hipófise/metabolismo , Prolactina/metabolismo , Ratos , Ratos Endogâmicos F344
9.
DNA Repair (Amst) ; 7(2): 281-91, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18221731

RESUMO

Transcription-coupled repair of endogenous DNA damage appears crucial for the maintenance of the central and peripheral nervous systems. Ercc1 is essential for nucleotide excision repair and is also involved in recombination repair and the repair of interstrand cross-links. We have investigated the neurological phenotype of Ercc1-deficient mice where the liver dysfunction has been corrected by an Ercc1 transgene controlled by a liver-specific promoter. We observed poor coordination, ataxia and loss of visual acuity, but saw no evidence of the anticipated histopathological neurodegeneration, or of abnormal neuromuscular junctions. Instead we observed uraemic encephalopathy, a brain disease resulting from kidney failure. This diagnosis was supported by histopathological signs of kidney disease, as well as proteinuria. When we examined archival sections from neural-specific Ercc1 knockout mice, which showed the same reduced growth and died at the same age as the liver-corrected Ercc1 knockouts, we found no evidence of kidney pathology or encephalopathy. Thus, while some aspects of the Ercc1-deficient phenotype are indicative of functional neurodegeneration, we obtained no structural evidence for this. The structural changes observed in the brains of liver-corrected Ercc1 knockouts appear to be a secondary consequence of kidney failure arising from Ercc1 deficiency.


Assuntos
Encefalopatias Metabólicas/etiologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Endonucleases/deficiência , Junção Neuromuscular/patologia , Fenótipo , Insuficiência Renal/etiologia , Animais , Encefalopatias Metabólicas/patologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Imuno-Histoquímica , Rim/patologia , Camundongos , Proteinúria , Desempenho Psicomotor , Células de Purkinje/patologia , Insuficiência Renal/complicações
10.
BMC Neurosci ; 10: 148, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20015399

RESUMO

BACKGROUND: The slow Wallerian Degeneration (Wld(S)) gene specifically protects axonal and synaptic compartments of neurons from a wide variety of degeneration-inducing stimuli, including; traumatic injury, Parkinson's disease, demyelinating neuropathies, some forms of motor neuron disease and global cerebral ischemia. The Wld(S) gene encodes a novel Ube4b-Nmnat1 chimeric protein (Wld(S) protein) that is responsible for conferring the neuroprotective phenotype. How the chimeric Wld(S) protein confers neuroprotection remains controversial, but several studies have shown that expression in neurons in vivo and in vitro modifies key cellular pathways, including; NAD biosynthesis, ubiquitination, the mitochondrial proteome, cell cycle status and cell stress. Whether similar changes are induced in non-neuronal tissue and organs at a basal level in vivo remains to be determined. This may be of particular importance for the development and application of neuroprotective therapeutic strategies based around Wld(S)-mediated pathways designed for use in human patients. RESULTS: We have undertaken a detailed analysis of non-neuronal Wld(S) expression in Wld(S) mice, alongside gravimetric and histological analyses, to examine the influence of Wld(S) expression in non-neuronal tissues. We show that expression of Wld(S) RNA and protein are not restricted to neuronal tissue, but that the relative RNA and protein expression levels rarely correlate in these non-neuronal tissues. We show that Wld(S) mice have normal body weight and growth characteristics as well as gravimetrically and histologically normal organs, regardless of Wld(S) protein levels. Finally, we demonstrate that previously reported Wld(S)-induced changes in cell cycle and cell stress status are neuronal-specific, not recapitulated in non-neuronal tissues at a basal level. CONCLUSIONS: We conclude that expression of Wld(S) protein has no adverse effects on non-neuronal tissue at a basal level in vivo, supporting the possibility of its safe use in future therapeutic strategies targeting axonal and/or synaptic compartments in patients with neurodegenerative disease. Future experiments determining whether Wld(S) protein can modify responses to injury in non-neuronal tissue are now required.


Assuntos
Rim/química , Fígado/química , Proteínas do Tecido Nervoso/análise , Baço/química , Degeneração Walleriana/genética , Animais , Química Encefálica , Ciclo Celular , Cerebelo/química , Cerebelo/citologia , Expressão Gênica , Genótipo , Rim/citologia , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Miocárdio/química , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/análise , Baço/citologia , Timo/química , Timo/citologia , Degeneração Walleriana/patologia
11.
Biochem Soc Trans ; 37(Pt 6): 1293-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909265

RESUMO

Translation elongation factor eEF1A (eukaryotic elongation factor 1A) exists as two individually encoded variants in mammals, which are 98% similar and 92% identical at the amino acid level. One variant, eEF1A1, is almost ubiquitously expressed, the other variant, eEF1A2, shows a very restricted pattern of expression. A spontaneous mutation was described in 1972, which gives rise to the wasted phenotype: homozygous wst/wst mice develop normally until shortly after weaning, but then lose muscle bulk, acquire tremors and gait abnormalities and die by 4 weeks. This mutation has been shown to be a deletion of 15 kb that removes the promoter and first exon of the gene encoding eEF1A2. The reciprocal pattern of expression of eEF1A1 and eEF1A2 in muscle fits well with the timing of onset of the phenotype of wasted mice: eEF1A1 declines after birth until it is undetectable by 3 weeks, whereas eEF1A2 expression increases over this time. No other gene is present in the wasted deletion, and transgenic studies have shown that the phenotype is due to loss of eEF1A2. We have shown that eEF1A2, but not eEF1A1, is also expressed at high levels in motor neurons in the spinal cord. Wasted mice develop many pathological features of motor neuron degeneration and may represent a good model for early onset of motor neuron disease. Molecular modelling of the eEF1A1 and eEF1A2 protein structures highlights differences between the two variants that may be critical for functional differences. Interactions between eEF1A2 and ZPR1 (zinc-finger protein 1), which interacts with the SMN (survival motor neuron) protein, may be important in motor neuron biology.


Assuntos
Degeneração Neural , Neurônios , Fator 1 de Elongação de Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Mutantes , Modelos Moleculares , Mutação , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiologia
12.
Mol Cell Biol ; 26(19): 7201-10, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980622

RESUMO

PC4- and SF2-interacting protein 1 (Psip1)-also known as lens epithelium-derived growth factor (Ledgf)-is a chromatin-associated protein that has been implicated in transcriptional regulation, mRNA splicing, and cell survival in vitro, but its biological function in vivo is unknown. We identified an embryonic stem cell clone with disrupted Psip1 in a gene trap screen. The resulting Psip1-betageo fusion protein retains chromatin-binding activity and the PWWP and AT hook domains of the wild-type protein but is missing the highly conserved C terminus. The majority of mice homozygous for the disrupted Psip1 gene died perinatally, but some survived to adulthood and displayed a range of phenotypic abnormalities, including low fertility, an absence of epididymal fat pads, and a tendency to develop blepharitis. However, contrary to expectations, the lens epithelium was normal. The mutant mice also exhibited motor and/or behavioral defects such as hind limb clenching, reduced grip strength, and reduced locomotor activity. Finally, both Psip1(-/-) neonates and surviving adults had craniofacial and skeletal abnormalities. They had brachycephaly, small rib cages, and homeotic skeletal transformations with incomplete penetrance. The latter phenotypes suggest a role for Psip1 in the control of Hox expression and may also explain why PSIP1 (LEDGF) is found as a fusion partner with NUP98 in myeloid leukemias.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/anormalidades , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais não Endogâmicos , Comportamento Animal , Células Cultivadas , Cromatina/metabolismo , Sequência Conservada , Embrião de Mamíferos/citologia , Embrião de Mamíferos/patologia , Olho/citologia , Olho/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Camundongos , Camundongos Mutantes , Transtornos das Habilidades Motoras/patologia , Fenótipo , Estrutura Terciária de Proteína , Análise de Sobrevida , Fatores de Transcrição/genética , Regulação para Cima/genética
13.
Brain ; 131(Pt 2): 368-80, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18222992

RESUMO

Opa3 mRNA is expressed in all tissues examined to date, but currently the function of the OPA3 protein is unknown. Intriguingly, various mutations in the OPA3 gene lead to two similar diseases in humans: autosomal dominant inherited optic atrophy and cataract (ADOAC) and a metabolic condition; type 3-methylglutaconic aciduria (MGA). Early onset bilateral optic atrophy is a common characteristic of both disorders; retinal ganglion cells are lost and visual acuity is impaired from an early age. In order to investigate the function of the OPA3 protein, we have generated a novel ENU-induced mutant mouse carrying a missense mutation in the OPA3 gene. The heterozygous mutation in exon 2, causes an amino acid change p.L122P (c.365T>C), which is predicted to alter tertiary protein structure. In the heterozygous state, the mice appear uncompromised however; in the homozygous state mice display some of the features of MGA. Visual function is severely reduced, consistent with significant loss of retinal ganglion cells and degeneration of axons in the optic nerve. In the homozygous optic nerve, there was evidence of increased mitochondrial activity, as demonstrated by the increased presence of mitochondrial marker Cytochrome C Oxidase (COX) histochemistry. Mice homozygous for the opa3(L122P) mutation also display a severe multi-systemic disease characterized by reduced lifespan (majority dying before 4 months), decreased weight, dilated cardiomyopathy, extrapyramidal dysfunction and gross neuro-muscular defects. All of these defects are synonymous with the phenotypic characteristics of Type III MGA found in humans. This model will be of major importance for future studies of the specific function of the OPA3 gene.


Assuntos
Modelos Animais de Doenças , Mutação de Sentido Incorreto , Atrofia Óptica Autossômica Dominante/genética , Proteínas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/ultraestrutura , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Glutaratos/urina , Humanos , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Atrofia Óptica Autossômica Dominante/fisiopatologia , Nervo Óptico/ultraestrutura , Fenótipo , Mutação Puntual , Células Ganglionares da Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Medula Espinal/ultraestrutura , Síndrome , Transcrição Gênica , Acuidade Visual
14.
J Am Soc Nephrol ; 19(1): 47-58, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18032795

RESUMO

The syndrome of apparent mineralocorticoid excess arises from nonfunctional mutations in 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), an enzyme that inactivates cortisol and confers aldosterone specificity on the mineralocorticoid receptor. Loss of 11betaHSD2 permits glucocorticoids to activate the mineralocorticoid receptor, and the hypertension in the syndrome is presumed to arise from volume expansion secondary to renal sodium retention. An 11betaHSD2 null mouse was generated on an inbred C57BL/6J genetic background, allowing survival to adulthood. 11betaHSD2(-/-) mice had BP approximately 20 mmHg higher on average compared with wild-type mice but were volume contracted, not volume expanded as expected. Initially, impaired sodium excretion associated with increased activity of the epithelial sodium channel was observed. By 80 days of age, however, channel activity was abolished and 11betaHSD2(-/-) mice lost salt. Despite the natriuresis, hypertension remained but was not attributable to intrinsic vascular dysfunction. Instead, urinary catecholamine levels in 11betaHSD2(-/-) mice were double those in wild-type mice, and alpha1-adrenergic receptor blockade rescued the hypertensive phenotype, suggesting that vasoconstriction contributes to the sustained hypertension in this model. In summary, it is proposed that renal sodium retention remains a key event in apparent mineralocorticoid excess but that the accompanying hypertension changes from a renal to a vascular etiology over time.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/deficiência , Canais Epiteliais de Sódio/fisiologia , Hipertensão/fisiopatologia , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Acetilcolina/farmacologia , Animais , Progressão da Doença , Hipertensão/enzimologia , Hipertensão/patologia , Túbulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norepinefrina/farmacologia , Sódio/urina , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
15.
J Neurosci ; 27(39): 10487-96, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17898220

RESUMO

Glucocorticoids are pivotal in the maintenance of memory and cognitive functions as well as other essential physiological processes including energy metabolism, stress responses, and cell proliferation. Normal aging in both rodents and humans is often characterized by elevated glucocorticoid levels that correlate with hippocampus-dependent memory impairments. 11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) amplifies local intracellular ("intracrine") glucocorticoid action; in the brain it is highly expressed in the hippocampus. We investigated whether the impact of 11beta-HSD1 deficiency in knock-out mice (congenic on C57BL/6J strain) on cognitive function with aging reflects direct CNS or indirect effects of altered peripheral insulin-glucose metabolism. Spatial learning and memory was enhanced in 12 month "middle-aged" and 24 month "aged" 11beta-HSD1(-/-) mice compared with age-matched congenic controls. These effects were not caused by alterations in other cognitive (working memory in a spontaneous alternation task) or affective domains (anxiety-related behaviors), to changes in plasma corticosterone or glucose levels, or to altered age-related pathologies in 11beta-HSD1(-/-) mice. Young 11beta-HSD1(-/-) mice showed significantly increased newborn cell proliferation in the dentate gyrus, but this was not maintained into aging. Long-term potentiation was significantly enhanced in subfield CA1 of hippocampal slices from aged 11beta-HSD1(-/-) mice. These data suggest that 11beta-HSD1 deficiency enhances synaptic potentiation in the aged hippocampus and this may underlie the better maintenance of learning and memory with aging, which occurs in the absence of increased neurogenesis.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Fatores Etários , Envelhecimento/fisiologia , Animais , Cognição/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Cloning Stem Cells ; 8(4): 319-34, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17196096

RESUMO

The evolution of "humanized" (i.e., free of animal sourced reagents) and ultimately chemically defined culture systems for human embryo stem cell (hESC) isolation and culture is of importance to improving their efficacy and safety in research and therapeutic applications. This can be achieved by integration of a multitude of individual approaches to replace or eliminate specific animal sourced reagents into a single comprehensive protocol. In the present study our objective was to integrate strategies obviating reliance on some of the most poorly defined and path-critical factors associated with hESC derivation, namely the use of animal immune compliment to isolate embryo inner cell mass, and animal sourced serum products and feeder cells to sustain hESC growth and attachment. As a result we report the derivation of six new hESC lines isolated by outgrowth from whole blastocysts on an extracellular matrix substrate of purified human laminin (Ln) with transitional reliance on mitotically inactivated human fibroblast (HDF) feeder cells. With this integrated system hESC lines were isolated using either HDF conditioned medium supplemented with a bovine-sourced serum replacement (bSRM), or a defined serum-free medium (SFM) containing only human sourced and recombinant protein. Further, outgrowth of embryonic cells from whole blastocysts in both media could be achieved for up to 1 week without reliance on feeder cells. All variant conditions sustained undifferentiated cell status, a stable karyotype and the potential to form cells representative of all three germinal lineages in vitro and in vivo, when transitioned off of feeders onto Laminin or Matrigel. Our study thus demonstrates the capacity to integrate derivation strategies eliminating a requirement for animal immune compliment and serum products, with a transitional requirement for human feeder cells. This represents another sequential step in the generation of therapeutic grade stem cells with reduced risk of zoonotic pathogen transmission.


Assuntos
Técnicas de Cultura de Células , Linhagem Celular , Células-Tronco Embrionárias , Animais , Blastocisto/citologia , Proliferação de Células , Separação Celular , Meios de Cultura , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Fibroblastos/metabolismo , Humanos , Cariotipagem , Laminina/metabolismo , Camundongos
17.
Dis Model Mech ; 9(2): 165-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26839400

RESUMO

Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.


Assuntos
Membrana Basal/metabolismo , Colágeno Tipo IV/genética , Estresse do Retículo Endoplasmático , Glomérulos Renais/patologia , Túbulos Renais/patologia , Mutação , Animais , Humanos , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Camundongos
18.
Dis Model Mech ; 8(8): 903-17, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26035382

RESUMO

Wilms' tumours, paediatric kidney cancers, are the archetypal example of tumours caused through the disruption of normal development. The genetically best-defined subgroup of Wilms' tumours is the group caused by biallelic loss of the WT1 tumour suppressor gene. Here, we describe a developmental series of mouse models with conditional loss of Wt1 in different stages of nephron development before and after the mesenchymal-to-epithelial transition (MET). We demonstrate that Wt1 is essential for normal development at all kidney developmental stages under study. Comparison of genome-wide expression data from the mutant mouse models with human tumour material of mutant or wild-type WT1 datasets identified the stage of origin of human WT1-mutant tumours, and emphasizes fundamental differences between the two human tumour groups due to different developmental stages of origin.


Assuntos
Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Proteínas WT1/metabolismo , Tumor de Wilms/patologia , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Regulação Neoplásica da Expressão Gênica , Genoma , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Estadiamento de Neoplasias , Néfrons/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Imagem com Lapso de Tempo , Proteínas WT1/genética , Tumor de Wilms/genética
19.
Dis Model Mech ; 7(6): 711-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24764192

RESUMO

Mutations in RAB18 have been shown to cause the heterogeneous autosomal recessive disorder Warburg Micro syndrome (WARBM). Individuals with WARBM present with a range of clinical symptoms, including ocular and neurological abnormalities. However, the underlying cellular and molecular pathogenesis of the disorder remains unclear, largely owing to the lack of any robust animal models that phenocopy both the ocular and neurological features of the disease. We report here the generation and characterisation of a novel Rab18-mutant mouse model of WARBM. Rab18-mutant mice are viable and fertile. They present with congenital nuclear cataracts and atonic pupils, recapitulating the characteristic ocular features that are associated with WARBM. Additionally, Rab18-mutant cells exhibit an increase in lipid droplet size following treatment with oleic acid. Lipid droplet abnormalities are a characteristic feature of cells taken from WARBM individuals, as well as cells taken from individuals with other neurodegenerative conditions. Neurological dysfunction is also apparent in Rab18-mutant mice, including progressive weakness of the hind limbs. We show that the neurological defects are, most likely, not caused by gross perturbations in synaptic vesicle recycling in the central or peripheral nervous system. Rather, loss of Rab18 is associated with widespread disruption of the neuronal cytoskeleton, including abnormal accumulations of neurofilament and microtubule proteins in synaptic terminals, and gross disorganisation of the cytoskeleton in peripheral nerves. Global proteomic profiling of peripheral nerves in Rab18-mutant mice reveals significant alterations in several core molecular pathways that regulate cytoskeletal dynamics in neurons. The apparent similarities between the WARBM phenotype and the phenotype that we describe here indicate that the Rab18-mutant mouse provides an important platform for investigation of the disease pathogenesis and therapeutic interventions.


Assuntos
Anormalidades Múltiplas/fisiopatologia , Catarata/congênito , Córnea/anormalidades , Citoesqueleto/fisiologia , Modelos Animais de Doenças , Olho/crescimento & desenvolvimento , Hipogonadismo/fisiopatologia , Deficiência Intelectual/fisiopatologia , Microcefalia/fisiopatologia , Neurônios/fisiologia , Atrofia Óptica/fisiopatologia , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Catarata/fisiopatologia , Córnea/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas rab de Ligação ao GTP/genética
20.
PLoS One ; 8(1): e54640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349944

RESUMO

Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11ß-hydroxysteroid dehydrogenases (11ß-HSDs). Here we show expression and activity of 11ß-HSD1, but not 11ß-HSD2, in mouse mast cells with 11ß-HSD activity only in the keto-reductase direction, regenerating active glucocorticoids (cortisol, corticosterone) from inert substrates (cortisone, 11-dehydrocorticosterone). Mast cells from 11ß-HSD1-deficient mice show ultrastructural evidence of increased activation, including piecemeal degranulation and have a reduced threshold for IgG immune complex-induced mast cell degranulation. Consistent with reduced intracellular glucocorticoid action in mast cells, levels of carboxypeptidase A3 mRNA, a glucocorticoid-inducible mast cell-specific transcript, are lower in peritoneal cells from 11ß-HSD1-deficient than control mice. These findings suggest that 11ß-HSD1-generated glucocorticoids may tonically restrain mast cell degranulation, potentially influencing allergic, anaphylactic and inflammatory responses.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Corticosterona/biossíntese , Hidrocortisona/biossíntese , Mastócitos/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/deficiência , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Anafilaxia/enzimologia , Animais , Carboxipeptidases A/metabolismo , Degranulação Celular , Corticosterona/metabolismo , Expressão Gênica , Hidrocortisona/metabolismo , Hipersensibilidade/enzimologia , Inflamação/enzimologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA