Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Strahlenther Onkol ; 193(4): 243-259, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27888282

RESUMO

General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.


Assuntos
Modelos Estatísticos , Método de Monte Carlo , Neoplasias/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Algoritmos , Simulação por Computador , Humanos , Dosagem Radioterapêutica
2.
Radiat Oncol ; 19(1): 14, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267999

RESUMO

BACKGROUND: Monte Carlo simulation of radiation transport for medical linear accelerators (linacs) requires accurate knowledge of the geometrical description of the linac head. Since the geometry of Varian TrueBeam machines has not been disclosed, the manufacturer distributes phase-space files of the linac patient-independent part to allow researchers to compute absorbed dose distributions using the Monte Carlo method. This approach limits the possibility of achieving an arbitrarily small statistical uncertainty. This work investigates the use of the geometry of the Varian Clinac 2100, which is included in the Monte Carlo system PRIMO, as a surrogate. METHODS: Energy, radial and angular distributions extracted from the TrueBeam phase space files published by the manufacturer and from phase spaces tallied with PRIMO for the Clinac 2100 were compared for the 6, 8, 10 and 15 MV flattened-filtered beams. Dose distributions in water computed for the two sets of PSFs were compared with the Varian Representative Beam Data (RBD) for square fields with sides ranging from 3 to 30 cm. Output factors were calculated for square fields with sides ranging from 2 to 40 cm. RESULTS: Excellent agreement with the RBD was obtained for the simulations that employed the phase spaces distributed by Varian as well as for those that used the surrogate geometry, reaching in both cases Gamma ([Formula: see text], 2 mm) pass rates larger than [Formula: see text], except for the 15 MV surrogate. This result supports previous investigations that suggest a change in the material composition of the TrueBeam 15 MV flattening filter. In order to get the said agreement, PRIMO simulations were run using enlarged transport parameters to compensate the discrepancies between the actual and surrogate geometries. CONCLUSIONS: This work sustains the claim that the simulation of the 6, 8 and 10 MV flattening-filtered beams of the TrueBeam linac can be performed using the Clinac 2100 model of PRIMO without significant loss of accuracy.


Assuntos
Fatores de Transcrição , Humanos , Método de Monte Carlo , Simulação por Computador , Raios gama
3.
Radiother Oncol ; 181: 109464, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36640946

RESUMO

BACKGROUND AND PURPOSE: To establish an international quality standard for contouring and planning for high-risk neuroblastoma within the prospective High-Risk Neuroblastoma Study 2 of SIOP-Europe-Neuroblastoma (SIOPEN HR-NBL2), which includes a randomized question on dose escalation for residual disease. MATERIALS AND METHODS: Data on four patients with high-risk neuroblastoma were selected and distributed to the radiotherapy committee of the HR-NBL2 study for independent contouring and planning. Differences in contouring were analyzed using apparent and kappa-corrected agreement. Plans were analyzed regarding the dose-volume histogram metrics. Results were discussed among experts and agreement was obtained. RESULTS: Substantial agreement was found for contouring of the heart (0.64), liver (0.70), left lung (0.74), and right lung (0.74). For contouring of the gastrointestinal tract (0.54), left kidney (0.60), and right kidney (0.59) moderate agreement was obtained. For target volume delineation, agreement for preoperative tumour extent was moderate (0.42), for CTV fair (0.35) and only low (0.06) for residual tumour, respectively. The dose planning strategies appeared to be relatively homogeneous among all experts. CONCLUSION: Considerable variability was found for the delineation of target volumes, particularly the boost volume, whereas the contouring of the organs at risk and the planning strategy were reasonably consistent. In order to obtain reliable results from the randomized HR-NBL2 trial, standardization of target volume delineation based on adequate imaging is crucial.


Assuntos
Neuroblastoma , Radioterapia (Especialidade) , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Prospectivos , Pulmão , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/radioterapia , Variações Dependentes do Observador
4.
Front Oncol ; 13: 1222800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795436

RESUMO

Background: In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods: Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results: Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 µSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 µSv (testes) and 48 µSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion: The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.

5.
Front Oncol ; 12: 882506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875147

RESUMO

Background: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed-one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations. Materials and Methods: An anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x109 histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed. Results: In the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT. Conclusions: The proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV.

6.
Front Oncol ; 12: 882489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756661

RESUMO

Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (µGy/Gy) as well as thermal neutron dose equivalent per target dose (µSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 1010 histories reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1) on all voxels scoring more than 50% of the maximum dose. The primary beam was modeled following a Fermi-Eyges description of the spot envelope fitted to measurements. For the Monte Carlo simulation, the chemical composition of the tissues represented in ATOM was employed. The dose was tallied as dose-to-water, and data were normalized to the target dose (physical dose) to report on absorbed doses per target dose (mSv/Gy) or neutron dose equivalent per target dose (µSv/Gy), while also an estimate of the total organ dose was provided for a target dose of 50.4 Gy(RBE). Out-of-field doses showed absorbed doses that were 5 to 6 orders of magnitude lower than the target dose. The discrepancy between TLD data and the corresponding scored values in the Monte Carlo calculations involving proton and gamma contributions was on average 18%. The comparison between the neutron equivalent doses between the Monte Carlo simulation and the measured neutron doses was on average 8%. Organ dose calculations revealed the highest dose for the thyroid, which was 120 mSv, while other organ doses ranged from 18 mSv in the lungs to 0.6 mSv in the testes. The proposed computational method for routine calculation of the out-of-the-field dose in proton therapy produces results that are compatible with the experimental data and allow to calculate out-of-field organ doses during proton therapy.

7.
Strahlenther Onkol ; 187(8): 492-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21789740

RESUMO

INTRODUCTION: Small radiation fields are increasingly applied in clinical routine. In particular, they are necessary for the treatment of eye tumors. However, available treatment planning systems do not calculate the absorbed dose with the desired accuracy in the presence of small fields. Absorbed dose estimations obtained with Monte Carlo methods have the required accuracy for clinical applications, but the exceedingly long computation times associated with them hinder their routine use. In this article, a code for automatic Monte Carlo simulation of linacs and an application in the treatment of conjunctival lymphoma are presented. METHODS: Simulations of clinical linear accelerators were performed with the general-purpose radiation transport Monte Carlo code penelope. Accelerator geometry files, in electron mode, were generated with the program AutolinaC. RESULTS: The Monte Carlo simulation of an annular electron 6 MeV field used for the treatment of the conjunctival lymphoma yielded absorbed dose results statistically compatible with experimental measurements. In this simulation, 2% standard statistical uncertainty was reached in the same time employed by a hybrid Monte Carlo commercial code (eMC); however, eMC showed discrepancies of up to 7% on the absorbed dose with respect to experimental data. Results obtained with the analytic algorithm Pencil Beam Convolution differed from experimental data by 10% for this case. CONCLUSION: Owing to the systematic application of variance-reduction techniques, it is possible to accurately estimate the absorbed dose in patient images, using Monte Carlo methods, in times within clinical routine requirements. The program AutolinaC allows systematic use of these variance-reduction techniques within the code penelope.


Assuntos
Simulação por Computador , Neoplasias da Túnica Conjuntiva/cirurgia , Imageamento Tridimensional/métodos , Linfoma/cirurgia , Computação Matemática , Método de Monte Carlo , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Neoplasias da Túnica Conjuntiva/diagnóstico por imagem , Desenho de Equipamento , Humanos , Linfoma/diagnóstico por imagem , Imagens de Fantasmas , Software
8.
Med Phys ; 38(11): 5887-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22047353

RESUMO

PURPOSE: Two new codes, PENEASY and PENEASYLINAC, which automate the Monte Carlo simulation of Varian Clinacs of the 600, 1800, 2100, and 2300 series, together with their electron applicators and multileaf collimators, are introduced. The challenging case of a relatively small and far-from-axis field has been studied with these tools. METHODS: PENEASY is a modular, general-purpose main program for the PENELOPE Monte Carlo system that includes various source models, tallies and variance-reduction techniques (VRT). The code includes a new geometry model that allows the superposition of voxels and objects limited by quadric surfaces. A variant of the VRT known as particle splitting, called fan splitting, is also introduced. PENEASYLINAC, in turn, automatically generates detailed geometry and configuration files to simulate linacs with PENEASY. These tools are applied to the generation of phase-space files, and of the corresponding absorbed dose distributions in water, for two 6 MV photon beams from a Varian Clinac 2100 C∕D: a 40 × 40 cm(2) centered field; and a 3 × 5 cm(2) field centered at (4.5, -11.5) cm from the beam central axis. This latter configuration implies the largest possible over-traveling values of two of the jaws. Simulation results for the depth dose and lateral profiles at various depths are compared, by using the gamma index, with experimental values obtained with a PTW 31002 ionization chamber. The contribution of several VRTs to the computing speed of the more demanding off-axis case is analyzed. RESULTS: For the 40 × 40 cm(2) field, the percentages γ(1) and γ(1.2) of voxels with gamma indices (using 0.2 cm and 2% criteria) larger than unity and larger than 1.2 are 0.2% and 0%, respectively. For the 3 × 5 cm(2) field, γ(1) = 0%. These figures indicate an excellent agreement between simulation and experiment. The dose distribution for the off-axis case with voxels of 2.5 × 2.5 × 2.5 mm(3) and an average standard statistical uncertainty of 2% (1σ) is computed in 3.1 h on a single core of a 2.8 GHz Intel Core 2 Duo processor. This result is obtained with the optimal combination of the tested VRTs. In particular, fan splitting for the off-axis case accelerates execution by a factor of 240 with respect to standard particle splitting. CONCLUSIONS: PENEASY and PENEASYLINAC can simulate the considered Varian Clinacs both in an accurate and efficient manner. Fan splitting is crucial to achieve simulation results for the off-axis field in an affordable amount of CPU time. Work to include Elekta linacs and to develop a graphical interface that will facilitate user input is underway.


Assuntos
Método de Monte Carlo , Radiometria/métodos , Automação
9.
Med Phys ; 48(6): 3160-3171, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33715167

RESUMO

PURPOSE: Conical collimators, or cones, are tertiary collimators that attach to a radiotherapy linac and are suited for the stereotactic radiosurgery treatment of small brain lesions. The small diameter of the most used cones makes difficult the acquisition of the dosimetry data needed for the commissioning of treatment planning systems. Although many publications report dosimetric data of conical collimators for stereotactic radiosurgery, most of the works use different setups, which complicates comparisons. In other cases, the cone output factors reported do not take into account the effect of the small cone diameter on the detector response. Finally, few data exist on the dosimetry of cones with flattening-filter-free (FFF) beams from modern linac models. This work aims at obtaining a dosimetric characterization of the conical collimators manufactured by Brainlab AG (Munich, Germany) in a 6 MV FFF beam from a TrueBeam STx linac (Varian Medical Systems). METHODS: Percentage depth dose curves, lateral dose profiles and cone output factors were obtained using Monte Carlo simulations for the cones with diameters of 4, 5, 6, 7.5, 8, 10, 12.5, 15, 17.5, 20, 25, and 30 mm. The simulation of the linac head was carried out with the PRIMO Monte Carlo software, and the simulations of the cones and the water phantom were run with the general-purpose Monte Carlo code PENELOPE. The Monte Carlo model was validated by comparing the simulation results with measurements performed for the cones of 4, 5, and 7.5 mm of diameter using a stereotactic field diode, a microDiamond detector and EBT3 radiochromic film. In addition, for those cones, simulations and measurements were done for comparison purposes, by reproducing the experimental setups from the available publications. RESULTS: The experimental data acquired for the cones of 4, 5, and 7.5 mm validated the developed Monte Carlo model. The simulations accurately reproduced the experimental depths of maximum dose and the dose ratio at 20- and 10-cm depth (PDD20/10 ). A good agreement was obtained between simulated and experimental lateral dose profiles: The differences in the full-width at half-maximum were smaller than 0.2 mm, and the differences in the penumbra 80%-20% were smaller than 0.25 mm. The difference between the simulated and the average of the experimental output factors for the cones of 4, 5, and 7.5 mm of diameter was 0.0%, 0.0%, and 3.0%, respectively, well within the statistical uncertainty of the simulations (4.4% with coverage factor k = 2). It was also found that the simulated cone output factors agreed within 2% with the average of output factors reported in the literature for a variety of setup conditions, detectors, beam qualities, and cone manufacturers. CONCLUSION: A Monte Carlo model of cones for stereotactic radiosurgery has been developed and validated. The cone dosimetry dataset obtained in this work, consisting of percentage depth doses, lateral dose profiles and output factors, is useful to benchmark data acquired for the commissioning of cone-based radiosurgery treatment planning systems.


Assuntos
Radiocirurgia , Algoritmos , Alemanha , Método de Monte Carlo , Aceleradores de Partículas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Med Phys ; 48(6): 3186-3199, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33772808

RESUMO

BACKGROUND AND PURPOSE: Monte Carlo simulations as well as analytical computations of proton transport in material media require accurate values of multiple Coulomb scattering (MCS) angles. High-quality experimental data on MCS angles in the energy range for proton therapy are, however, sparse. In this work, MCS modeling in proton transport was evaluated employing an experimental method to measure these angles on a medical proton beamline in clinically relevant materials. Results are compared to Monte Carlo simulations and analytical models. MATERIALS AND METHODS: Aluminum, brass, and lucite (PMMA) scatterers of clinically relevant thicknesses were irradiated with protons at 100, 160, and 220 MeV. Resulting spatial distributions of individual pencil beams were measured with a scintillating screen. The MCS angles were determined by deconvolution and a virtual point source approach. Results were compared to those obtained with the Monte Carlo codes PENH, TOPAS, and RayStation Monte Carlo, as well as the analytical models RayStation Pencil Beam Algorithm and the Molière/Fano/Hanson variant of the Molière theory. RESULTS: Experimental data obtained with the presented methodology agree with previously published results within 6%, with an average deviation of 3%. The combined average uncertainty of the experimental data yielded 1.8%, while the combined maximum uncertainty was below 4%. The obtained Monte Carlo results for PENH, TOPAS, and RayStation deviate on average for all considered energies, materials and thicknesses, by 2.5%, 3.4%, and 2.8% from the experimental data, respectively. For the analytical models, the average deviations amount to 4.5% and 2.9% for the RayStation Pencil Beam Algorithm and the Molière/Fano/Hanson model, respectively. CONCLUSION: The experimental method developed for the present work allowed to measure MCS angles in clinical proton facilities with good accuracy. The presented method permits to extend the database on experimental MCS angles which is rather limited. This work further provides benchmark data for lucite in thicknesses relevant for clinical applications. The data may serve to validate dose engines of treatment planning systems and secondary dose check software. The Monte Carlo and analytical algorithms studied are capable of reproducing MCS data within the required accuracy for clinical applications.


Assuntos
Terapia com Prótons , Prótons , Algoritmos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
Med Phys ; 48(1): 456-476, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217026

RESUMO

BACKGROUND AND PURPOSE: PENH is a recently coded module for simulation of proton transport in conjunction with the Monte Carlo code PENELOPE. PENELOPE applies class II simulation to all type of interactions, in particular, to elastic collisions. PENH uses calculated differential cross sections for proton elastic collisions that include electron screening effects as well as nuclear structure effects. Proton-induced nuclear reactions are simulated from information in the ENDF-6 database or from alternative nuclear databases in ENDF format. The purpose of this work is to benchmark this module by simulating absorbed dose distributions from a single finite spot size proton pencil beam in water. MATERIALS AND METHODS: Monte Carlo simulations with PENH are compared with simulation results from TOPAS Monte Carlo (v3.1p2) and RayStation Monte Carlo (v6). Different beam models are examined in terms of mean energy and energy spread to match the measured profiles. The phase-space file is derived from experimental measurements. Simulated absorbed dose distributions are compared to experimental data obtained with the ionization chamber array MatriXX 2D detector (IBA Dosimetry) in a water tank. The experiments were conducted with a clinical IBA pencil beam scanning dedicated nozzle. In all simulations a Fermi-Eyges phase-space representation of a single finite spot size proton pencil beam is used. RESULTS: In general, there is a good agreement between simulated results and experimental data up to a distance of 3 cm from the central axis. In the core region (region where the dose is more than 10% of the maximum dose) PENH shows, overall, the smallest deviations from experimental data, with the largest radial rms (root mean square) smaller than 0.2. The results achieved by TOPAS and RayStation in that region are very close to those of PENH. For the halo region, that is the area of the dose distribution outside the core region reaching down to 0.01% of the maximum intensity, the largest rms achieved by TOPAS is always smaller than 0.5, yielding better results than the rest of the codes. CONCLUSION: The physics modeling of the PENELOPE/PENH code yields results consistent with measurements in the dose range relevant for proton therapy. The discrepancies between PENH appearing at distances larger than 3 cm from the central-beam axis are accountable to the lack of neutron simulation in this code. In contradistinction, TOPAS has a better agreement with experimental data at large distances from the central-beam axis because of the simulation of neutrons.


Assuntos
Terapia com Prótons , Prótons , Benchmarking , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
12.
Ocul Oncol Pathol ; 6(5): 353-359, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33123529

RESUMO

BACKGROUND/AIMS: The aim of this work is to compare Monte Carlo simulated absorbed dose distributions obtained from 106Ru eye plaques, whose heterogeneous emitter distribution is known, with the common homogeneous approximation. The effect of these heterogeneities on segmented structures at risk is analyzed using an anthropomorphic phantom. METHODS: The generic CCA and CCB, with a homogeneous emitter map, and the specific CCA1364 and CCB1256 106Ru eye plaques are modeled with the Monte Carlo code PENELOPE. To compare the effect of the heterogeneities in the segmented volumes, cumulative dose-volume histograms are calculated for different rotations of the aforementioned plaques. RESULTS: For the cornea, the CCA with the equatorial placement yields the lowest absorbed dose rate while for the CCA1364 in the same placement the absorbed dose rate is 33% higher. The CCB1256 with the hot spot oriented towards the cornea yields the maximum dose rate per unit of activity while it is 44% lower for the CCB. CONCLUSIONS: Dose calculations based on a homogeneous distribution of the emitter substance yield the lowest absorbed dose in the analyzed structures for all plaque placements. Treatment planning based on such calculations may result in an overdose of the structures at risk.

13.
Phys Chem Chem Phys ; 11(40): 9182-7, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19812839

RESUMO

We study the applicability of the semiclassical Feynman and Hibbs (FH) (second-order or fourth-order) effective potentials to the description of the thermodynamic properties of quantum fluids at finite temperatures. First, we use path integral Monte Carlo (PIMC) simulations to estimate the thermodynamic/static properties of our model quantum fluid, i.e. low-density 4He at 10 K. With PIMC we obtain the experimental equation of state, the single-particle mean kinetic energy, the single-particle density matrix and the single-particle momentum distribution of this system at low densities. We show that our PIMC results are in full agreement with experimental data obtained with deep inelastic neutron scattering at high momentum transfers (D. Colognesi, C. Andreani, R. Senesi, Europhys. Lett., 2000, 50, 202). As expected, in this region of the 4He phase diagram, quantum effects modify the width of the single-particle momentum distribution but do not alter its Gaussian shape. Knowing the exact values of density, pressure and single-particle mean kinetic energy for our model quantum fluid, we investigate the limitations of the semiclassical FH effective potentials. We show that commonly used 'short-time' approximations to the high-temperature density matrix due to Feynman and Hibbs can only be applied in a very limited range of the 4He phase diagram. We found that FH effective potentials reproduce the experimental densities of 4He at 10 K for Lambda/a < 0.45 (Lambda = 2.73 A denotes the thermal de Broglie wavelength, a = rho(-1/3) is the mean nearest-neighbor distance in the fluid and rho denotes fluid density). Moreover, semiclassical FH effective potentials are able to correctly predict the single-particle mean kinetic energy of 4He at 10 K in a very limited range of fluid densities, i.e.Lambda/a < 0.17. We show that the ad hoc application of the semiclassical FH effective potentials for the calculation of the thermodynamic properties of dense liquid-like para-hydrogen (para-H2) adsorbed in nanoporous materials below 72 K is questionable.

14.
Radiat Oncol ; 14(1): 67, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014356

RESUMO

BACKGROUND: The PRIMO system is a computer software that allows the Monte Carlo simulation of linear accelerators and the estimation of the subsequent absorbed dose distributions in phantoms and computed tomographies. The aim of this work is to validate the methods incorporated in PRIMO to evaluate the deviations introduced in the dose distributions by errors in the positioning of the leaves of the multileaf collimator recorded in the dynalog files during patient treatment. METHODS: The reconstruction of treatment plans from Varian's dynalog files was implemented in the PRIMO system. Dose distributions were estimated for volumetric-modulated arc therapy clinical cases of prostate and head&neck using the PRIMO fast Monte Carlo engine DPM. Accuracy of the implemented reconstruction methods was evaluated by comparing dose distributions obtained from the simulations of the plans imported from the treatment planning system with those obtained from the simulations of the plans reconstructed from the expected leaves positions recorded in the dynalog files. The impact on the dose of errors in the positions of the leaves was evaluated by comparing dose distributions estimated for plans reconstructed from expected leaves positions with dose distributions estimated from actual leaves positions. Gamma pass rate (GPR), a hereby introduced quantity named percentage of agreement (PA) and the percentage of voxels with a given systematic difference (α/Δ) were the quantities used for the comparisons. Errors were introduced in leaves positions in order to study the sensitivity of these quantities. RESULTS: A good agreement of the dose distributions obtained from the plan imported from the TPS and from the plan reconstructed from expected leaves positions was obtained. Not a significantly better agreement was obtained for an imported plan with an increased number of control points such as to approximately match the number of records in the dynalogs. When introduced errors were predominantly in one direction, the methods employed in this work were sensitive to dynalogs with root-mean-square errors (RMS) ≥0.2 mm. Nevertheless, when errors were in both directions, only RMS >1.2 mm produced detectable deviations in the dose. The PA and the α/Δ showed more sensitive to errors in the leaves positions than the GPR. CONCLUSIONS: Methods to verify the accuracy of the radiotherapy treatment from the information recorded in the Varian's dynalog files were implemented and verified in this work for the PRIMO system. Tolerance limits could be established based on the values of PA and α/Δ. GPR 3,3 is not recommended as a solely evaluator of deviations introduced in the dose by errors captured in the dynalog files.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Humanos , Masculino , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
15.
Radiat Oncol ; 14(1): 6, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634994

RESUMO

BACKGROUND: The availability of photon and electron spectra in digital form from current accelerators and Monte Carlo (MC) systems is scarce, and one of the packages widely used refers to linacs with a reduced clinical use nowadays. Such spectra are mainly intended for the MC calculation of detector-related quantities in conventional broad beams, where the use of detailed phase-space files (PSFs) is less critical than for MC-based treatment planning applications, but unlike PSFs, spectra can easily be transferred to other computer systems and users. METHODS: A set of spectra for a range of Varian linacs has been calculated using the PENELOPE/PRIMO MC system. They have been extracted from PSFs tallied for field sizes of 10 cm × 10 cm and 15 cm × 15 cm for photon and electron beams, respectively. The influence of the spectral bin width and of the beam central axis region used to extract the spectra have been analyzed. RESULTS: Spectra have been compared to those by other authors showing good agreement with those obtained using the, now superseded, EGS4/BEAM MC code, but significant differences with the most widely used photon data set. Other spectra, particularly for electron beams, have not been published previously for the machines simulated in this work. The influence of the bin width on the spectrum mean energy for 6 and 10 MV beams has been found to be negligible. The size of the region used to extract the spectra yields differences of up to 40% for the mean energies in 10 MV beams, but the maximum difference for TPR 20,10 values derived from depth-dose distributions does not exceed 2% relative to those obtained using the PSFs. This corresponds to kQ differences below 0.2% for a typical Farmer-type chamber, considered to be negligible for reference dosimetry. Different configurations for using electron spectra have been compared for 6 MeV beams, concluding that the geometry used for tallying the PSFs used to extract the spectra must be accounted for in subsequent calculations using the spectra as a source. CONCLUSIONS: An up-to-date set of consistent spectra for Varian accelerators suitable for the calculation of detector-related quantities in conventional broad beams has been developed and made available in digital form.


Assuntos
Elétrons , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Fótons , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo , Planejamento de Assistência ao Paciente , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
16.
Ocul Oncol Pathol ; 5(4): 276-283, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31367591

RESUMO

BACKGROUND/AIMS: Ruthenium plaques are used for the treatment of ocular tumors. The aim of this work is the comparison between simulated absorbed dose distributions tallied in an anthropomorphic phantom, obtained from ideal homogeneous plaques, and real eye plaques in which the actual heterogeneous distribution of 106Ru was measured. The placement of the plaques with respect to the tumor location was taken into consideration to optimize the effectiveness of the treatment. METHODS: The generic CCA and CCB, and the specific CCA1364 and CCB1256 106Ru eye plaques were modeled with the Monte Carlo code PENELOPE. To compare the suitability of each treatment for an anterior, equatorial and posterior tumor location, cumulative dose-volume histograms for the tumors and structures at risk were calculated. RESULTS: Eccentric placements of the plaques, taking into account the inhomogeneities of the emitter map, can substantially reduce the dose delivered to structures at risk while maintaining the prescribed dose at the tumor apex. CONCLUSIONS: The emitter map distribution of the plaque and the computerized tomography of the patient used in a Monte Carlo simulation allow an accurate determination of the plaque position with respect to the tumor with the potential to reduce the dose to sensitive structures.

18.
Med Phys ; 45(4): 1699-1707, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29399810

RESUMO

PURPOSE: Brachytherapy with 106 Ru/106 Rh plaques offers good outcomes for small-to-medium choroidal melanomas and retinoblastomas. The dose measurement of the plaques is challenging, due to the small range of the emitted beta particles and steep dose gradients involved. The scarce publications on film dosimetry of 106 Ru/106 Rh plaques used solid phantoms. This work aims to develop a practical method for measuring the absorbed dose distribution in water produced by 106 Ru/106 Rh plaques using EBT3 radiochromic film. METHODS: Experimental setups were developed to determine the dose distribution at a plane perpendicular to the symmetry axis of the plaque and at a plane containing the symmetry axis. One CCA and two CCX plaques were studied. The dose maps were obtained with the FilmQA Pro 2015 software, using the triple-channel dosimetry method. The measured dose distributions were compared to published Monte Carlo simulation and experimental data. RESULTS: A good agreement was found between measurements and simulations, improving upon published data. Measured reference dose rates agreed within the experimental uncertainty with data obtained by the manufacturer using a scintillation detector, with typical differences below 5%. The attained experimental uncertainty was 4.1% (k = 1) for the perpendicular setup, and 7.9% (k = 1) for the parallel setup. These values are similar or smaller than those obtained by the manufacturer and other authors, without the need of solid phantoms that are not available to most users. CONCLUSIONS: The proposed method may be useful to the users to perform quality assurance preclinical tests of 106 Ru/106 Rh plaques.


Assuntos
Braquiterapia , Olho/efeitos da radiação , Dosimetria Fotográfica , Doses de Radiação , Radioisótopos/uso terapêutico , Ródio/uso terapêutico , Radioisótopos de Rutênio/uso terapêutico , Água , Método de Monte Carlo , Dosagem Radioterapêutica
19.
Radiat Oncol ; 13(1): 256, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591056

RESUMO

BACKGROUND: PRIMO is a dose verification system based on the general-purpose Monte Carlo radiation transport code PENELOPE, which implements an accurate physics model of the interaction cross sections and the radiation transport process but with low computational efficiency as compared with fast Monte Carlo codes. One of these fast Monte Carlo codes is the Dose Planning Method (DPM). The purpose of this work is to describe the adaptation of DPM as an alternative PRIMO computation engine, to validate its performance against PENELOPE and to validate it for some specific cases. METHODS: DPM was parallelized and modified to perform radiation transport in quadric geometries, which are used to describe linacs, thus allowing the simulation of dynamic treatments. To benchmark the new code versus PENELOPE, both in terms of accuracy of results and simulation time, several tests were performed, namely, irradiation of a multi-layer phantom, irradiation of a water phantom using a collimating pattern defined by the multileaf collimator (MLC), and four clinical cases. The gamma index, with passing criteria of 1 mm/1%, was used to compare the absorbed dose distributions. Clinical cases were compared using a 3-D gamma analysis. RESULTS: The percentage of voxels passing the gamma criteria always exceeded 99% for the phantom cases, with the exception of the transport through air, for which dose differences between DPM and PENELOPE were as large as 24%. The corresponding percentage for the clinical cases was larger than 99%. The speedup factor between DPM and PENELOPE ranged from 2.5 ×, for the simulation of the radiation transport through a MLC and the subsequent dose estimation in a water phantom, up to 11.8 × for a lung treatment. A further increase of the computational speed, up to 25 ×, can be obtained in the clinical cases when a voxel size of (2.5 mm)3 is used. CONCLUSIONS: DPM has been incorporated as an efficient and accurate Monte Carlo engine for dose estimation in PRIMO. It allows the concatenated simulation of the patient-dependent part of the linac and the patient geometry in static and dynamic treatments. The discrepancy observed between DPM and PENELOPE, which is due to an artifact of the cross section interpolation algorithm for low energy electrons in air, does not affect the results in other materials.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias Pulmonares/radioterapia , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Software
20.
Phys Med Biol ; 52(21): 6475-83, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17951856

RESUMO

Water/medium stopping-power ratios, s(w,m), have been calculated for several ICRP and ICRU tissues, namely adipose tissue, brain, cortical bone, liver, lung (deflated and inflated) and spongiosa. The considered clinical beams were 6 and 18 MV x-rays and the field size was 10 x 10 cm(2). Fluence distributions were scored at a depth of 10 cm using the Monte Carlo code PENELOPE. The collision stopping powers for the studied tissues were evaluated employing the formalism of ICRU Report 37 (1984 Stopping Powers for Electrons and Positrons (Bethesda, MD: ICRU)). The Bragg-Gray values of s(w,m) calculated with these ingredients range from about 0.98 (adipose tissue) to nearly 1.14 (cortical bone), displaying a rather small variation with beam quality. Excellent agreement, to within 0.1%, is found with stopping-power ratios reported by Siebers et al (2000a Phys. Med. Biol. 45 983-95) for cortical bone, inflated lung and spongiosa. In the case of cortical bone, s(w,m) changes approximately 2% when either ICRP or ICRU compositions are adopted, whereas the stopping-power ratios of lung, brain and adipose tissue are less sensitive to the selected composition. The mass density of lung also influences the calculated values of s(w,m), reducing them by around 1% (6 MV) and 2% (18 MV) when going from deflated to inflated lung.


Assuntos
Tecido Adiposo/patologia , Aceleradores de Partículas , Dosagem Radioterapêutica , Radioterapia/métodos , Tecido Adiposo/metabolismo , Simulação por Computador , Elétrons , Pulmão/patologia , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Fótons , Padrões de Referência , Distribuição Tecidual , Água/química , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA