Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Magn Reson Med ; 91(5): 2089-2103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38156822

RESUMO

PURPOSE: To investigate whether a T2 inter-slice variation could occur when a multi-slice multi-echo spin echo (MESE) sequence is used for image acquisition and to propose an enhanced method for reconstructing T2 maps that can effectively address and correct these variations. METHODS: Bloch simulations were performed accounting for the direct saturation effect to evaluate magnetization changes in multi-slice 2D MESE sequence. Experimental phantom scans were performed to validate these simulations. An improved version of the dictionary-based reconstruction approach was proposed, enabling the creation of a multi-slice dictionary of echo modulation curves (EMC). The corresponding method has been assayed considering inter-slice T2 variation with phantoms and in lower leg. RESULTS: Experimental and numerical study illustrate that direct saturation leads to a bias of EMCs. This bias during the T2 maps reconstructions using original single-slice EMC-dictionary method led to inter-slice T2 variation of 2.03% in average coefficient of variation (CV) in agarose phantoms, and up to 2.8% in vivo (for TR = 2 s, slice gap = 0%). A reduction of CV was observed when increasing the gap up to 100% (0.36% in phantoms, and up to 1.5% in vivo) or increasing TR up to 4 s (0.76% in phantoms, and up to 1.9% in vivo). Matching the multi-slice experimental data with multi-slice dictionaries provided a reduced CV of 0.54% in phantoms and up to 2.3% in vivo. CONCLUSION: T2 values quantified from multi-slice MESE images using single-slice dictionaries are biased. A dedicated multi-slice EMC method providing the appropriate dictionaries can reduce the inter-slice T2 variation.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem
2.
Magn Reson Med ; 90(2): 737-751, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094028

RESUMO

PURPOSE: Automatic measurement of wrist cartilage volume in MR images. METHODS: We assessed the performance of four manually optimized variants of the U-Net architecture, nnU-Net and Mask R-CNN frameworks for the segmentation of wrist cartilage. The results were compared to those from a patch-based convolutional neural network (CNN) we previously designed. The segmentation quality was assessed on the basis of a comparative analysis with manual segmentation. The best networks were compared using a cross-validation approach on a dataset of 33 3D VIBE images of mostly healthy volunteers. Influence of some image parameters on the segmentation reproducibility was assessed. RESULTS: The U-Net-based networks outperformed the patch-based CNN in terms of segmentation homogeneity and quality, while Mask R-CNN did not show an acceptable performance. The median 3D DSC value computed with the U-Net_AL (0.817) was significantly larger than DSC values computed with the other networks. In addition, the U-Net_AL provided the lowest mean volume error (17%) and the highest Pearson correlation coefficient (0.765) with respect to the ground truth values. Of interest, the reproducibility computed using U-Net_AL was larger than the reproducibility of the manual segmentation. Moreover, the results indicate that the MRI-based wrist cartilage volume is strongly affected by the image resolution. CONCLUSIONS: U-Net CNN with attention layers provided the best wrist cartilage segmentation performance. In order to be used in clinical conditions, the trained network can be fine-tuned on a dataset representing a group of specific patients. The error of cartilage volume measurement should be assessed independently using a non-MRI method.


Assuntos
Processamento de Imagem Assistida por Computador , Punho , Humanos , Processamento de Imagem Assistida por Computador/métodos , Punho/diagnóstico por imagem , Reprodutibilidade dos Testes , Redes Neurais de Computação , Cartilagem
3.
MAGMA ; 34(6): 929-938, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34181118

RESUMO

OBJECTIVE: To comparatively assess the performance of highly selective pulses computed with the SLR algorithm in fast-spin echo (FSE) within the current radiofrequency safety limits using a metamaterial-based coil for wrist magnetic resonance imaging. METHODS: Apodized SINC pulses commonly used for clinical FSE sequences were considered as a reference. Selective SLR pulses with a time-bandwidth product of four were constructed in the MATPULSE program. Slice selection profiles in conventional T1-weighted and PD-weighted FSE wrist imaging pulse sequences were modeled using a Bloch equations simulator. Signal evolution was assessed in three samples with relaxation times equivalent to those in musculoskeletal tissues at 1.5T. Regular and SLR-based FSE pulse sequences were tested in a phantom experiment in a multi-slice mode with different gaps between slices and the direct saturation effect was investigated. RESULTS: As compared to the regular FSEs with a conventional transmit coil, combining the utilization of the metadevice with SLR-based FSEs provided a 23 times lower energy deposition in a duty cycle. When the slice gap was decreased from 100 to 0%, the "slice cross-talk" effect reduced the signal intensity by 15.9-17.6% in the SLR-based and by 22.9-32.3% in the regular T1-weighted FSE; and by 0.0-6.4% in the SLR-based and by 0.3-9.3% in the regular PD-weighted FSE. DISCUSSION AND CONCLUSION: SLR-based FSE together with the metadevice allowed to increase the slice selectivity while still being within the safe SAR limits. The "slice cross-talk" effects were conditioned by the number of echoes in the echo train, the repetition time, and T1 relaxation times. The approach was more beneficial for T1-weighted SLR-based FSE as compared to PD-weighted. The combination of the metadevice and SLR-based FSE offers a promising alternative for MR investigations that require scanning in a "Low-SAR" regime such as those for children, pregnant women, and patients with implanted devices.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Criança , Feminino , Humanos , Imagens de Fantasmas , Gravidez , Ondas de Rádio , Silanos
4.
NMR Biomed ; 33(8): e4320, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394453

RESUMO

The study objective was to investigate the performance of a dedicated convolutional neural network (CNN) optimized for wrist cartilage segmentation from 2D MR images. CNN utilized a planar architecture and patch-based (PB) training approach that ensured optimal performance in the presence of a limited amount of training data. The CNN was trained and validated in 20 multi-slice MRI datasets acquired with two different coils in 11 subjects (healthy volunteers and patients). The validation included a comparison with the alternative state-of-the-art CNN methods for the segmentation of joints from MR images and the ground-truth manual segmentation. When trained on the limited training data, the CNN outperformed significantly image-based and PB-U-Net networks. Our PB-CNN also demonstrated a good agreement with manual segmentation (Sørensen-Dice similarity coefficient [DSC] = 0.81) in the representative (central coronal) slices with a large amount of cartilage tissue. Reduced performance of the network for slices with a very limited amount of cartilage tissue suggests the need for fully 3D convolutional networks to provide uniform performance across the joint. The study also assessed inter- and intra-observer variability of the manual wrist cartilage segmentation (DSC = 0.78-0.88 and 0.9, respectively). The proposed deep learning-based segmentation of the wrist cartilage from MRI could facilitate research of novel imaging markers of wrist osteoarthritis to characterize its progression and response to therapy.


Assuntos
Cartilagem/diagnóstico por imagem , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Punho , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Osteoartrite/diagnóstico por imagem , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 80(4): 1726-1737, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29427296

RESUMO

PURPOSE: Design and characterization of a new inductively driven wireless coil (WLC) for wrist imaging at 1.5 T with high homogeneity operating due to focusing the B1 field of a birdcage body coil. METHODS: The WLC design has been proposed based on a volumetric self-resonant periodic structure of inductively coupled split-loop resonators with structural capacitance. The WLC was optimized and studied regarding radiofrequency fields and interaction to the birdcage coil (BC) by electromagnetic simulations. The manufactured WLC was characterized by on-bench measurements and in vivo and phantom study in comparison to a standard cable-connected receive-only coil. RESULTS: The WLC placed into BC gave the measured B1+ increase of the latter by 8.6 times for the same accepted power. The phantom and in vivo wrist imaging showed that the BC in receiving with the WLC inside reached equal or higher signal-to-noise ratio than the conventional clinical setup comprising the transmit-only BC and a commercial receive-only flex-coil and created no artifacts. Simulations and on-bench measurements proved safety in terms of specific absorption rate and reflected transmit power. CONCLUSIONS: The results showed that the proposed WLC could be an alternative to standard cable-connected receive coils in clinical magnetic resonance imaging. As an example, with no cable connection, the WLC allowed wrist imaging on a 1.5 T clinical machine using a full-body BC for transmitting and receive with the desired signal-to-noise ratio, image quality, and safety.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Tecnologia sem Fio/instrumentação , Punho/diagnóstico por imagem , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
6.
NMR Biomed ; 31(8): e3952, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29944184

RESUMO

Particular applications in preclinical magnetic resonance imaging require the entire body of an animal to be imaged with sufficient quality. This is usually performed by combining regions scanned with small coils with high sensitivity or long scans using large coils with low sensitivity. Here, a metamaterial-inspired design employing a parallel array of wires operating on the principle of eigenmode hybridization was used to produce a small-animal imaging coil. The coil field distribution responsible for the coil field of view and sensitivity was simulated in an electromagnetic simulation package and the coil geometrical parameters were optimized for whole-body imaging. A prototype coil was then manufactured and assembled using brass telescopic tubes with copper plates as distributed capacitance. Its field distribution was measured experimentally using the B1+ mapping technique and was found to be in close correspondence with the simulated results. The coil field distribution was found to be suitable for large field of view small-animal imaging and the coil image quality was compared with a commercially available coil by whole-body scanning of living mice. Signal-to-noise measurements in living mice showed higher values than those of a commercially available coil with large receptive fields, and rivalled the performance of small receptive field and high-sensitivity coils. The coil was deemed to be suitable for some whole-body, small-animal preclinical applications.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Ondas de Rádio , Imagem Corporal Total , Animais , Simulação por Computador , Rim/diagnóstico por imagem , Camundongos Endogâmicos BALB C , Razão Sinal-Ruído
7.
Magn Reson Chem ; 56(2): 140-143, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29127740

RESUMO

Temperature dependences are compared for 1 H and 13 C NMR 1/T1 curves relaxation rates in three imidazolium-based ionic liquids (ILs), namely, in [bmim]PF6 , [bmim]BF4 , and [emim]CH3 COO. 13 C curves show alike behavior for all three ILs and follow a well-known Bloembergen-Pound-Purcell (BPP) equation. On the contrary, an essential part of 1 H curves differ strongly from corresponding 13 C ones and also have different shapes for different ILs. For the first time, we have detected the specific, two-maximum shape of 1 H relaxation curve for hydrogen atom of C(2)H group of the [emim]CH3 COO. Assuming that this maximum reflects the correlated rotation of several adjoining ion pairs, we have tried to destroy this rotation by addition of glycerol to the [emim]CH3 COO. The second, high-temperature maximum has disappeared in the [emim]CH3 COO-glycerol mixture, and this fact confirms our assumption. Copyright © 2017 John Wiley & Sons, Ltd.

8.
Phys Chem Chem Phys ; 16(22): 10480-4, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24733492

RESUMO

The temperature dependencies of (13)C NMR relaxation rates in [bmim]PF6 ionic liquid have been measured and the characteristic times (τc) for the cation reorientation have been recalculated. We found the origin of the incorrect τc temperature dependencies that were earlier reported for ring carbons in a number of imidazolium-based ILs. After a correction of the approach (13)C T1, the relaxation data allowed us to obtain the characteristic times for an orientation mobility of each carbon, and a complicated experiment, such as NOE, was not required. Thus the applicability of (13)C NMR relaxation rate measurements to the calculation of the characteristic times for reorientation of all the carbons of the [bmim](+) cation was confirmed and our findings have shown that a (13)C NMR relaxation technique allowed its application to ionic liquids to be equally successful as for other liquid systems.

9.
J Magn Reson ; 339: 107209, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35397309

RESUMO

This work performs a detailed assessment of radiofrequency (RF) safety and imaging performance of a volumetric wireless coil based on periodically coupled split-loop resonators (SLRs) for 1.5 T wrist MRI versus a commercially available transceive extremity coil. In particular, we evaluated the transmit efficiency and RF safety for three setups: a whole-body birdcage coil, a transceive extremity birdcage coil, and a volumetric wireless coil inductively coupled to the whole-body birdcage coil. The imaging performance of the two latter setups was studied experimentally for nine subjects. The signal-to-noise ratio (SNR) of the images acquired with several standard pulse sequences for osteoarthritis wrist imaging was assessed. Application of the wireless coil significantly improved the specific absorption rate (SAR) efficiency of the whole-body birdcage coil, with at least 4.3-fold and 7.6-fold improvement of local and global SAR efficiencies, respectively. This setup also outperformed the transceive extremity coil in terms of SNR (up to 1.40-fold gain) with a moderate (11%) reduction of the local SAR efficiency.


Assuntos
Imageamento por Ressonância Magnética , Punho , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Punho/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA