Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 262, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957728

RESUMO

OBJECTIVE: Ongoing neuroaxonal damage is a major contributor to disease progression and long-term disability in multiple sclerosis. However, spatio-temporal distribution and pathophysiological mechanisms of neuroaxonal damage during acute relapses and later chronic disease stages remain poorly understood. METHODS: Here, we applied immunohistochemistry, single-molecule array, spatial transcriptomics, and microglia/axon co-cultures to gain insight into spatio-temporal neuroaxonal damage in experimental autoimmune encephalomyelitis (EAE). RESULTS: Association of spinal cord white matter lesions and blood-based neurofilament light (sNfL) levels revealed a distinct, stage-dependent anatomical pattern of neuroaxonal damage: in chronic EAE, sNfL levels were predominately associated with anterolateral lumbar lesions, whereas in early EAE sNfL showed no correlation with lesions in any anatomical location. Furthermore, neuroaxonal damage in late EAE was largely confined to white matter lesions but showed a widespread distribution in early EAE. Following this pattern of neuroaxonal damage, spatial transcriptomics revealed a widespread cyto- and chemokine response at early disease stages, whereas late EAE was characterized by a prominent glial cell accumulation in white matter lesions. These findings were corroborated by immunohistochemistry and microglia/axon co-cultures, which further revealed a strong association between CNS myeloid cell activation and neuroaxonal damage both in vivo and in vitro. INTERPRETATION: Our findings indicate that CNS myeloid cells may play a crucial role in driving neuroaxonal damage in EAE. Moreover, neuroaxonal damage can progress in a stage-dependent centripetal manner, transitioning from normal-appearing white matter to focal white matter lesions. These insights may contribute to a better understanding of neurodegeneration and elevated sNfL levels observed in multiple sclerosis patients at different disease stages.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Humanos , Animais , Doenças Neuroinflamatórias , Filamentos Intermediários/patologia , Transcriptoma , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/patologia
2.
Cell Mol Life Sci ; 76(16): 3055-3081, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31236626

RESUMO

'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.


Assuntos
Proteínas ADAM/metabolismo , Sistema Nervoso/metabolismo , Proteínas ADAM/química , Animais , Transporte Biológico , Epilepsia/metabolismo , Epilepsia/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Bainha de Mielina/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Canais de Potássio/metabolismo , Proteólise
3.
FASEB J ; 32(7): 3560-3573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29430990

RESUMO

The transmembrane protein, ADAM10 (a disintegrin and metalloprotease 10), has key physiologic functions-for example, during embryonic development and in the brain. During transit through the secretory pathway, immature ADAM10 (proADAM10) is converted into its proteolytically active, mature form (mADAM10). Increasing or decreasing the abundance and/or activity of mADAM10 is considered to be a therapeutic approach for the treatment of such diseases as Alzheimer's disease and cancer. Yet biochemical detection and characterization of mADAM10 has been difficult. In contrast, proADAM10 is readily detected-for example, in immunoblots-which suggests that mADAM10 is only a fraction of total cellular ADAM10. Here, we demonstrate that mADAM10, but not proADAM10, unexpectedly undergoes rapid, time-dependent degradation upon biochemical cell lysis in different cell lines and in primary neurons, which prevents the detection of the majority of mADAM10 in immunoblots. This degradation required the catalytic activity of ADAM10, was efficiently prevented by adding active site inhibitors to the lysis buffer, and did not affect proADAM10, which suggests that ADAM10 degradation occurred in an intramolecular and autoproteolytic manner. Inhibition of postlysis autoproteolysis demonstrated efficient cellular ADAM10 maturation with higher levels of mADAM10 than proADAM10. Moreover, a cycloheximide chase experiment revealed that mADAM10 is a long-lived protein with a half-life of approximately 12 h. In summary, our study demonstrates that mADAM10 autoproteolysis must be blocked to allow for the proper detection of mADAM10, which is essential for the correct interpretation of biochemical and cellular studies of ADAM10.-Brummer, T., Pigoni, M., Rossello, A., Wang, H., Noy, P. J., Tomlinson, M. G., Blobel, C. P., Lichtenthaler, S. F. The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation.


Assuntos
Proteína ADAM10/metabolismo , Proteólise , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
4.
Ther Adv Neurol Disord ; 17: 17562864231224108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414722

RESUMO

We present a case of a 42-year-old woman with paraneoplastic anti-N-Methyl-D-Aspartat (NMDA)-receptor encephalitis and concurrent neuroborreliosis that was initially misdiagnosed as post-COVID-19 syndrome. Clinically, the patient presented with a range of chronic and subacute neuropsychiatric symptoms and recalled a tick bite weeks prior to admission. The patient had undergone psychiatric and complementary medical treatments for 1 year before admission and was initially diagnosed with post-COVID-19 syndrome. Admission was performed because of acute worsening with fever, confusion, and unsteady gait. Cerebrospinal fluid (CSF) analysis revealed pleocytosis with elevated borrelia Immunoglobulin M (IgM) and Immunoglobulin M (IgG) CSF/blood antibody indices, indicating acute neuroborreliosis. Anti-NMDA receptor antibodies were identified in the CSF via a cell-based assay and were confirmed by an external laboratory. Other paraneoplastic antibodies were ruled out during in-house examination. Cranial Magnetic resonance imaging (MRI) revealed basal meningitis, rhomb- and limbic encephalitis. A subsequent pelvic Computer tomography (CT) scan identified an ovarian teratoma. The patient's clinical condition improved dramatically with antibiotic treatment and plasmapheresis, the teratoma was surgically removed and she was started on rituximab. Our case highlights that amidst the prevailing focus on COVID-19-related health concerns, other well-established, but rare neurological conditions should not be neglected. Furthermore, our case illustrates that patients may suffer from multiple, concurrent, yet pathophysiologically unrelated neuroinflammatory conditions.

5.
Curr Opin Neurobiol ; 75: 102588, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732103

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune condition of the central nervous system (CNS) characterized by acute inflammatory relapses, chronic neuro-axonal degeneration, and subsequent disability progression. T cells - in interaction with B cells and CNS-resident glial cells - are key initiators and drivers of neurodegeneration in MS. However, it is not entirely clear how encephalitogenic T cells orchestrate the local immune response within the brain and how they overtake disease stage-specific roles in MS pathogenesis. This review highlights recent advances in understanding direct and indirect T cell-neuron interactions in inflammatory and progressive MS. Finally, we discuss new diagnostic tools such as neurofilament light chain (NfL), which is on the cusp of becoming a key factor in clinical and therapeutic decision-making.


Assuntos
Esclerose Múltipla , Biologia , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Neuroglia/patologia , Neurônios/patologia , Linfócitos T/patologia
6.
Brain Commun ; 4(4): fcac153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813883

RESUMO

Disability in multiple sclerosis is generally classified by sensory and motor symptoms, yet cognitive impairment has been identified as a frequent manifestation already in the early disease stages. Imaging- and more recently blood-based biomarkers have become increasingly important for understanding cognitive decline associated with multiple sclerosis. Thus, we sought to determine the prognostic utility of serum neurofilament light chain levels alone and in combination with MRI markers by examining their ability to predict cognitive impairment in early multiple sclerosis. A comprehensive and detailed assessment of 152 early multiple sclerosis patients (Expanded Disability Status Scale: 1.3 ± 1.2, mean age: 33.0 ± 10.0 years) was performed, which included serum neurofilament light chain measurement, MRI markers (i.e. T2-hyperintense lesion volume and grey matter volume) acquisition and completion of a set of cognitive tests (Symbol Digits Modalities Test, Paced Auditory Serial Addition Test, Verbal Learning and Memory Test) and mood questionnaires (Hospital Anxiety and Depression scale, Fatigue Scale for Motor and Cognitive Functions). Support vector regression, a branch of unsupervised machine learning, was applied to test serum neurofilament light chain and combination models of biomarkers for the prediction of neuropsychological test performance. The support vector regression results were validated in a replication cohort of 101 early multiple sclerosis patients (Expanded Disability Status Scale: 1.1 ± 1.2, mean age: 34.4 ± 10.6 years). Higher serum neurofilament light chain levels were associated with worse Symbol Digits Modalities Test scores after adjusting for age, sex Expanded Disability Status Scale, disease duration and disease-modifying therapy (B = -0.561; SE = 0.192; P = 0.004; 95% CI = -0.940 to -0.182). Besides this association, serum neurofilament light chain levels were not linked to any other cognitive or mood measures (all P-values > 0.05). The tripartite combination of serum neurofilament light chain levels, lesion volume and grey matter volume showed a cross-validated accuracy of 88.7% (90.8% in the replication cohort) in predicting Symbol Digits Modalities Test performance in the support vector regression approach, and outperformed each single biomarker (accuracy range: 68.6-75.6% and 68.9-77.8% in the replication cohort), as well as the dual biomarker combinations (accuracy range: 71.8-82.3% and 72.6-85.6% in the replication cohort). Taken together, early neuro-axonal loss reflects worse information processing speed, the key deficit underlying cognitive dysfunction in multiple sclerosis. Our findings demonstrate that combining blood and imaging measures improves the accuracy of predicting cognitive impairment, highlighting the clinical utility of cross-modal biomarkers in multiple sclerosis.

7.
Ther Adv Neurol Disord ; 14: 17562864211035542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457039

RESUMO

The past decades have yielded major therapeutic advances in many autoimmune conditions - such as multiple sclerosis (MS) - and thus ushered in a new era of more targeted and increasingly potent immunotherapies. Yet this growing arsenal of therapeutic immune interventions has also rendered therapy much more challenging for the attending physician, especially when treating patients with more than one autoimmune condition. Importantly, some therapeutic strategies are either approved for several autoimmune disorders or may be repurposed for other conditions, therefore opening new curative possibilities in related fields. In this article, we especially focus on frequent and therapeutically relevant concomitant autoimmune conditions faced by neurologists when treating patients with MS, namely psoriasis, rheumatoid arthritis and inflammatory bowel diseases. We provide an overview of the available disease-modifying therapies, highlight possible contraindications, show pathophysiological overlaps and finally present which therapeutics can be utilized as a combinatory treatment, in order to 'kill two birds with one stone'.

8.
EMBO Mol Med ; 11(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833305

RESUMO

The metalloprotease ADAM10 is a drug target in Alzheimer's disease, where it cleaves the amyloid precursor protein (APP) and lowers amyloid-beta. Yet, ADAM10 has additional substrates, which may cause mechanism-based side effects upon therapeutic ADAM10 activation. However, they may also serve-in addition to APP-as biomarkers to monitor ADAM10 activity in patients and to develop APP-selective ADAM10 activators. Our study demonstrates that one such substrate is the neuronal cell adhesion protein NrCAM ADAM10 controlled NrCAM surface levels and regulated neurite outgrowth in vitro in an NrCAM-dependent manner. However, ADAM10 cleavage of NrCAM, in contrast to APP, was not stimulated by the ADAM10 activator acitretin, suggesting that substrate-selective ADAM10 activation may be feasible. Indeed, a whole proteome analysis of human CSF from a phase II clinical trial showed that acitretin, which enhanced APP cleavage by ADAM10, spared most other ADAM10 substrates in brain, including NrCAM Taken together, this study demonstrates an NrCAM-dependent function for ADAM10 in neurite outgrowth and reveals that a substrate-selective, therapeutic ADAM10 activation is possible and may be monitored with NrCAM.


Assuntos
Proteína ADAM10/metabolismo , Doença de Alzheimer/patologia , Moléculas de Adesão Celular/metabolismo , Proteína ADAM10/antagonistas & inibidores , Acitretina/farmacologia , Acitretina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Proteólise/efeitos dos fármacos , Proteoma/análise , Proteoma/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Especificidade por Substrato , Tetraspaninas/genética , Tetraspaninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA