RESUMO
BACKGROUND: Of the > 2600 Salmonella serovars, Salmonella enterica serovar I 4,[5],12:i:- (serovar I 4,[5],12:i:-) has emerged as one of the most common causes of human salmonellosis and the most frequent multidrug-resistant (MDR; resistance to ≥3 antimicrobial classes) nontyphoidal Salmonella serovar in the U.S. Serovar I 4,[5],12:i:- isolates have been described globally with resistance to ampicillin, streptomycin, sulfisoxazole, and tetracycline (R-type ASSuT) and an integrative and conjugative element with multi-metal tolerance named Salmonella Genomic Island 4 (SGI-4). RESULTS: We analyzed 13,612 serovar I 4,[5],12:i:- strain sequences available in the NCBI Pathogen Detection database to determine global distribution, animal sources, presence of SGI-4, occurrence of R-type ASSuT, frequency of antimicrobial resistance (AMR), and potential transmission clusters. Genome sequences for serovar I 4,[5],12:i:- strains represented 30 countries from 5 continents (North America, Europe, Asia, Oceania, and South America), but sequences from the United States (59%) and the United Kingdom (28%) were dominant. The metal tolerance island SGI-4 and the R-type ASSuT were present in 71 and 55% of serovar I 4,[5],12:i:- strain sequences, respectively. Sixty-five percent of strain sequences were MDR which correlates to serovar I 4,[5],12:i:- being the most frequent MDR serovar. The distribution of serovar I 4,[5],12:i:- strain sequences in the NCBI Pathogen Detection database suggests that swine-associated strain sequences were the most frequent food-animal source and were significantly more likely to contain the metal tolerance island SGI-4 and genes for MDR compared to all other animal-associated isolate sequences. CONCLUSIONS: Our study illustrates how analysis of genomic sequences from the NCBI Pathogen Detection database can be utilized to identify the prevalence of genetic features such as antimicrobial resistance, metal tolerance, and virulence genes that may be responsible for the successful emergence of bacterial foodborne pathogens.
Assuntos
Salmonella enterica , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas/genética , Testes de Sensibilidade Microbiana , Salmonella/genética , Sorogrupo , Suínos , Estados Unidos/epidemiologiaRESUMO
Salmonella spp. are estimated to cause 1.2 million cases of human foodborne illness each year in the United States, and pigs can often be asymptomatically colonized with Salmonella spp. (>50% of farms). Recent reports state that 18.3% of Salmonella enterica serovar Typhimurium isolates are resistant to ≥3 antimicrobial classes, and multidrug-resistant (MDR) strains are associated with an increased hospitalization rate and other complications. Chlortetracycline is commonly used in swine production to prevent/treat various diseases; therefore, chlortetracycline treatment of pigs unknowingly colonized with MDR Salmonella may have collateral effects on Salmonella spp. (and other gut bacteria). In this study, we determined the effect of in-feed chlortetracycline (400 g/ton) on shedding and colonization of pigs challenged with the MDR S Typhimurium strain DT104 (n = 11/group). We also assessed the impact on the fecal microbiota over the 12-day experimental period and on the ileum, cecum, and tonsil microbiota at 7 days postinoculation (dpi). In MDR S Typhimurium-inoculated pigs, chlortetracycline administration significantly increased fecal shedding at 2 dpi (+1.4 log10 CFU/g; P < 0.001) and enhanced tonsil colonization (+3.1 log10 CFU/g; P < 0.001). There were few major alterations detected in the gut or tonsillar microbiota of pigs treated with MDR S Typhimurium and/or chlortetracycline. The tonsillar transcriptome was largely unaffected despite increased colonization by MDR S Typhimurium following inoculation of the chlortetracycline-treated pigs. These results highlight the idea that chlortetracycline administration can enhance shedding and colonization of MDR S Typhimurium in pigs, which could increase the risk of environmental dissemination of MDR Salmonella strains.IMPORTANCESalmonella spp. are an important cause of foodborne illness in North America, and pork products are associated with sporadic cases and outbreaks of human salmonellosis. Isolates of Salmonella may be resistant to multiple antibiotics, and infections with multidrug-resistant (MDR) Salmonella spp. are more difficult to treat, leading to increased hospitalization rates. Swine operations commonly use antimicrobials, such as chlortetracycline, to prevent/treat infections, which may have collateral effects on pig microbial populations. Recently, we demonstrated that chlortetracycline induces the expression of genes associated with pathogenesis and invasion in MDR Salmonella enterica serovar Typhimurium in vitro In our current study, we show increased tonsillar colonization and fecal shedding of the MDR S Typhimurium strain DT104 from pigs administered chlortetracycline. Therefore, pigs unknowingly colonized with multidrug-resistant Salmonella spp. and receiving chlortetracycline for an unrelated infection may be at a greater risk for disseminating MDR Salmonella spp. to other pigs and to humans through environmental or pork product contamination.
Assuntos
Derrame de Bactérias/efeitos dos fármacos , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tonsila Palatina/microbiologia , Salmonella enterica/efeitos dos fármacos , Ração Animal , Animais , Antibacterianos/farmacologia , Ceco/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controleRESUMO
Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. It is most often transient in nature, causing an infection that lasts 2 to 3 days. However, E. coli has been shown to cause a persistent infection in a minority of cases. Mechanisms that allow for a persistent E. coli infection are not fully understood. The goal of this work was to determine differences between E. coli strains originally isolated from dairy cattle with transient and persistent mastitis. Using RNA sequencing, we show gene expression differences in nearly 200 genes when bacteria from the two clinical phenotypes are compared. We sequenced the genomes of the E. coli strains and report genes unique to the two phenotypes. Differences in the wca operon, which encodes colanic acid, were identified by DNA as well as RNA sequencing and differentiated the two phenotypes. Previous work demonstrated that E. coli strains that cause persistent infections were more motile than those that cause transient infections. Deletion of genes in the wca operon from a persistent-infection strain resulted in a reduction of motility as measured in swimming and swarming assays. Furthermore, colanic acid has been shown to protect bacteria from complement-mediated killing. We show that transient-infection E. coli strains were more sensitive to complement-mediated killing. The deletion of genes from the wca operon caused a persistent-infection E. coli strain to become sensitive to complement-mediated killing. This work identifies important differences between E. coli strains that cause persistent and transient mammary infections in dairy cattle.
Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Mastite Bovina/microbiologia , Polissacarídeos/genética , Animais , Bovinos , Proteínas de Escherichia coli/genética , Feminino , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Genômica/métodos , Glândulas Mamárias Animais/microbiologia , Fenótipo , Virulência/genéticaRESUMO
Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is that it only expresses the fliC gene for bacterial motility (i.e., monophasic), while most Salmonella strains alternately express two flagellin genes (fliC and fljB). The goal of this study was to characterize the porcine response following inoculation with a multidrug-resistant (MDR) serovar I 4,[5],12:i:- isolate associated with a multistate pork outbreak to determine if the increased prevalence of serovar I 4,[5],12:i:- in swine is due to enhanced pathogenicity. Pigs were inoculated and subsequently evaluated for the ability of the isolate to colonize intestinal tissues, cause clinical symptoms, induce an immune response, and alter the fecal microbiota over a 7-day period. Pigs exhibited a significant increase in rectal temperature (fever) (p < 0.01) and fecal moisture content (diarrhea) (p < 0.05) at 2 days postinoculation (d.p.i.) compared with preinoculation (day 0). Serum analyses revealed significantly increased interferon-gamma (IFN-γ) levels at 2 (p ≤ 0.0001) and 3 (p < 0.01) d.p.i. compared with day 0, and antibodies against Salmonella lipopolysaccharide (LPS) were present in all pigs by 7 d.p.i. Serovar I 4,[5],12:i:- colonized porcine intestinal tissues and was shed in the feces throughout the 7-day study. Analysis of the 16S rRNA gene sequences demonstrated that the fecal microbiota was significantly altered following MDR serovar I 4,[5],12:i:- inoculation, with the largest shift observed between 0 and 7 d.p.i. Our data indicate that the pork outbreak-associated MDR serovar I 4,[5],12:i:- isolate induced transient clinical disease in swine and perturbed the gastrointestinal microbial community. The porcine response to MDR serovar I 4,[5],12:i:- is similar to previous studies with virulent biphasic Salmonella enterica serovar Typhimurium, suggesting that the absence of fljB does not substantially alter acute colonization or pathogenesis in pigs.
Assuntos
Farmacorresistência Bacteriana Múltipla , Flagelina/genética , Salmonelose Animal/imunologia , Salmonella typhimurium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Tipagem de Bacteriófagos , Surtos de Doenças , Fezes/microbiologia , Feminino , Microbiologia de Alimentos , Humanos , RNA Ribossômico 16S/genética , Carne Vermelha/microbiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/patologia , Salmonella typhimurium/genética , Sorogrupo , Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: Multidrug-resistant (MDR) Salmonella isolates are associated with increased morbidity compared to antibiotic-sensitive strains and are an important health and safety concern in both humans and animals. Salmonella enterica serovar Typhimurium is a prevalent cause of foodborne disease, and a considerable number of S. Typhimurium isolates from humans and livestock are resistant to three or more antibiotics. The majority of these MDR S. Typhimurium isolates are resistant to tetracycline, a commonly used and clinically and agriculturally relevant antibiotic. Because exposure of drug-resistant bacteria to antibiotics can affect cellular processes associated with virulence, such as invasion, we investigated the effect tetracycline had on the invasiveness of tetracycline-resistant MDR S. Typhimurium isolates. RESULTS: The isolates selected and tested were from two common definitive phage types of S. Typhimurium, DT104 and DT193, and were resistant to tetracycline and at least three other antibiotics. Although Salmonella invasiveness is temporally regulated and normally occurs during late-log growth phase, tetracycline exposure induced the full invasive phenotype in a cell culture assay during early-log growth in several DT193 isolates. No changes in invasiveness due to tetracycline exposure occurred in the DT104 isolates during early-log growth or in any of the isolates during late-log growth. Real-time PCR was used to test expression of the virulence genes hilA, prgH, and invF, and these genes were significantly up-regulated during early-log growth in most isolates due to tetracycline exposure; however, increased virulence gene expression did not always correspond with increased invasion, and therefore was not an accurate indicator of elevated invasiveness. This is the first report to assess DT193 isolates, as well as the early-log growth phase, in response to tetracycline exposure, and it was the combination of both parameters that was necessary to observe the induced invasion phenotype. CONCLUSIONS: In this report, we demonstrate that the invasiveness of MDR S. Typhimurium can be modulated in the presence of tetracycline, and this effect is dependent on growth phase, antibiotic concentration, and strain background. Identifying the conditions necessary to establish an invasive phenotype is important to elucidate the underlying factors associated with increased virulence of MDR Salmonella.
Assuntos
Antibacterianos/metabolismo , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Tetraciclina/metabolismo , Linhagem Celular , Endocitose/efeitos dos fármacos , Perfilação da Expressão Gênica , Hepatócitos/microbiologia , Humanos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Regulação para Cima , Virulência/efeitos dos fármacos , Fatores de Virulência/biossínteseRESUMO
Control of foodborne Salmonella within the farm-retail continuum is a complex issue since over 2500 serovars of Salmonella exist, the host range of Salmonella spp. varies greatly, and Salmonella is environmentally ubiquitous. To identify Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) genes important for pathogen survival, our research group previously screened a signature-tagged mutagenesis bank in an ex vivo swine stomach content assay. A mutation in the poxA gene, a member of the gene family encoding class-II aminoacyl-tRNA synthetases, decreased survival of Salmonella Typhimurium in the ex vivo swine stomach content assay. In the current study, complementation with a plasmid-encoded poxA gene restored survival of the poxA mutant to the level of the parental, wild-type strain. In vivo analysis of the poxA mutant in the natural porcine host revealed significantly reduced fecal shedding of Salmonella, decreased colonization of the tonsils, and decreased detection of the mutant strain in the cecal contents of the pigs at 7 days postinoculation (p < 0.05). Body temperature (fever) of the pigs inoculated with wild-type Salmonella Typhimurium was significantly higher than that of pigs inoculated with the poxA mutant (p < 0.05). Two-dimensional gel electrophoresis revealed characteristic differences in the protein profile of the poxA mutant relative to the wild-type strain, indicating that deletion of poxA in Salmonella Typhimurium exerts selective effects on translation and/or posttranslational modifications of mRNA species that are necessary for stress survival and colonization of the natural swine host.
Assuntos
Lisina-tRNA Ligase/fisiologia , Viabilidade Microbiana , Mutação , Biossíntese de Proteínas , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Derrame de Bactérias , Translocação Bacteriana , Ceco/microbiologia , Linhagem Celular , Fezes/microbiologia , Feminino , Febre/etiologia , Gastroenteropatias/microbiologia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/veterinária , Genes Bacterianos , Humanos , Lisina-tRNA Ligase/genética , Masculino , Tonsila Palatina/microbiologia , Salmonelose Animal/fisiopatologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/fisiologia , Sus scrofaRESUMO
Salmonella enterica serovar Typhimurium (S. Typhimurium) responds to the catecholamine, norepinephrine by increasing bacterial growth and enhancing motility. In this study, iron with or without the siderophore, ferrioxamine E also enhanced bacterial motility. Iron-enhanced motility was growth-rate dependent, while norepinephrine-enhanced motility was growth-rate independent. The outer membrane catecholate receptors, IroN, FepA and CirA (required for norepinephrine-enhanced growth) were not required for norepinephrine-enhanced motility, nor was ExbD of the energy-transducing TonB-ExbB-ExbD ferri-siderophore uptake system. Examination of the QseBC two-component system revealed that qseB and qseBC mutants have motility phenotypes similar to wild-type S. Typhimurium, while motility of the qseC mutant was significantly decreased (P<0.01). Each mutant of the QseBC system, as well as mutants of qseE and pmrA, responded to norepinephrine with increased motility, suggesting that other genes are involved in norepinephrine-enhanced motility of S. Typhimurium. In the swine host, fecal shedding of the qseBC mutant was similar to wild-type S. Typhimurium, whereas fecal shedding of the qseC mutant was significantly decreased (P<0.01). Our data indicate that, in a qseC mutant, the QseB response regulator decreases motility and swine colonization; inactivation of the qseBC operon restores these bacterial phenotypes, classifying QseB as a negative regulator of bacterial motility and swine colonization.
Assuntos
Proteínas de Bactérias/metabolismo , Percepção de Quorum , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Animais , Proteínas de Bactérias/genética , Derrame de Bactérias , Cloretos/farmacologia , Fezes/microbiologia , Feminino , Compostos Férricos/farmacologia , Masculino , Mutação , Norepinefrina/farmacologia , Óperon , Peptídeos Cíclicos/farmacologia , Salmonella typhimurium/genética , SuínosRESUMO
Supershedding cattle shed Escherichia coli O157:H7 (O157) at ≥ 104 colony-forming units/g feces. We recently demonstrated that a supershed O157 (SS-O157) strain, SS-17, hyperadheres to the rectoanal junction (RAJ) squamous epithelial (RSE) cells which may contribute to SS-O157 persistence at this site in greater numbers, thereby increasing the fecal O157 load characterizing the supershedding phenomenon. In order to verify if this would be the signature adherence profile of any SS-O157, we tested additional SS-O157 isolates (n = 101; each from a different animal) in the RSE cell adherence assay. Similar to SS-17, all 101 SS-O157 exhibited aggregative adherence on RSE cells, with 56% attaching strongly (>10 bacteria/cell; hyperadherent) and 44% attaching moderately (1-10 bacteria/cells). Strain typing using Polymorphic Amplified Typing Sequences (PATS) analysis assigned the 101 SS-O157 into 5 major clades but not to any predominant genotype. Interestingly, 69% of SS-O157 isolates were identical to human O157 outbreak strains based on pulsed field gel electrophoresis profiles (CDC PulseNet Database), grouped into two clades by PATS distinguishing them from remaining SS-O157, and were hyperadherent on RSE cells. A subset of SS-O157 isolates (n = 53) representing different PATS and RSE cell adherence profiles were analyzed for antibiotic resistance (AR). Several SS-O157 (30/53) showed resistance to sulfisoxazole, and one isolate was resistant to both sulfisoxazole and tetracycline. Minimum inhibitory concentration (MIC) tests confirmed some of the resistance observed using the Kirby-Bauer disk diffusion test. Each SS-O157 isolate carried at least 10 genes associated with AR. However, genes directly associated with AR were rarely amplified: aac (3)-IV in 2 isolates, sul2 in 3 isolates, and tetB in one isolate. The integrase gene, int, linked with integron-based AR acquisition/transmission, was identified in 92% of SS-O157 isolates. Our results indicate that SS-O157 isolates could potentially persist longer at the bovine RAJ but exhibit limited resistance towards clinical antibiotics.
RESUMO
Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of at least 38 metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for four weeks prior to and three weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.
Assuntos
Resistência a Múltiplos Medicamentos/genética , Sequências Repetitivas Dispersas/genética , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Surtos de Doenças/prevenção & controle , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ilhas Genômicas/genética , Testes de Sensibilidade Microbiana/métodos , Carne de Porco , Sorogrupo , Suínos , Estados UnidosRESUMO
The genome of a multidrug-resistant (MDR) Salmonella enterica subsp. enterica serovar I 4,[5],12:i:- isolate from the 2015 U.S. pork outbreak was sequenced. The complete nucleotide sequence of USDA15WA-1 is 5,031,277 bp, including Salmonella genomic island 4 encoding tolerance to multiple metals and an MDR module inserted in the fljB region.
RESUMO
BACKGROUND: Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that affect several mammalian species. At least three factors related to the host prion protein are known to modulate susceptibility or resistance to a TSE: amino acid sequence, atypical number of octapeptide repeats, and expression level. These factors have been extensively studied in breeds of Bos taurus cattle in relation to classical bovine spongiform encephalopathy (BSE). However, little is currently known about these factors in Bos indicus purebred or B. indicus x B. taurus composite cattle. The goal of our study was to establish the frequency of markers associated with enhanced susceptibility or resistance to classical BSE in B. indicus purebred and composite cattle. RESULTS: No novel or TSE-associated PRNP-encoded amino acid polymorphisms were observed for B. indicus purebred and composite cattle, and all had the typical number of octapeptide repeats. However, differences were observed in the frequencies of the 23-bp and 12-bp insertion/deletion (indel) polymorphisms associated with two bovine PRNP transcription regulatory sites. Compared to B. taurus, B. indicus purebred and composite cattle had a significantly lower frequency of 23-bp insertion alleles and homozygous genotypes. Conversely, B. indicus purebred cattle had a significantly higher frequency of 12-bp insertion alleles and homozygous genotypes in relation to both B. taurus and composite cattle. The origin of these disparities can be attributed to a significantly different haplotype structure within each species. CONCLUSION: The frequencies of the 23-bp and 12-bp indels were significantly different between B. indicus and B. taurus cattle. No other known or potential risk factors were detected for the B. indicus purebred and composite cattle. To date, no consensus exists regarding which bovine PRNP indel region is more influential with respect to classical BSE. Should one particular indel region and associated genotypes prove more influential with respect to the incidence of classical BSE, differences regarding overall susceptibility and resistance for B. indicus and B. taurus cattle may be elucidated.
Assuntos
Encefalopatia Espongiforme Bovina/genética , Predisposição Genética para Doença , Polimorfismo Genético , Príons/genética , Animais , Bovinos , Frequência do Gene , Haplótipos , Mutação INDEL , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único , Especificidade da EspécieRESUMO
BACKGROUND: Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline and florfenicol are frequently administrated to food-producing animals to treat and prevent various diseases. Therefore, we evaluated the response of MDR S. Typhimurium after exposure to these two antibiotics. RESULTS: We exposed four MDR S. Typhimurium isolates to sub-inhibitory concentrations of chlortetracycline (16 and 32 µg/ml) or florfenicol (16 µg/ml) for 30 min during early-log phase. Differentially expressed genes following antibiotic treatment were identified using RNA-seq, and genes associated with attachment and those located within the Salmonella pathogenicity islands were significantly up-regulated following exposure to either antibiotic. The effect of antibiotic exposure on cellular invasion and motility was also assessed. Swimming and swarming motility were decreased due to antibiotic exposure. However, we observed chlortetracycline enhanced cellular invasion in two strains and florfenicol enhanced invasion in a third isolate. CONCLUSIONS: Chlortetracycline and florfenicol exposure during early-log growth altered the expression of nearly half of the genes in the S. Typhimurium genome, including a large number of genes associated with virulence and pathogenesis; this transcriptional alteration was not due to the SOS response. The results suggest that exposure to either of these two antibiotics may lead to the expression of virulence genes that are typically only transcribed in vivo, as well as only during late-log or stationary phase in vitro.
RESUMO
Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer's disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.
Assuntos
Infecções por Haemophilus/genética , Haemophilus parasuis/genética , Doenças dos Suínos/genética , Suínos/microbiologia , Sequência de Aminoácidos , Animais , Genoma/genética , Genômica , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Haemophilus parasuis/patogenicidade , Suínos/genética , Doenças dos Suínos/microbiologia , Virulência/genética , Fatores de Virulência/genéticaRESUMO
DNA microarrays can be used to detect polymorphic loci in addition to identifying genes or regions that are absent within a genome. A survey such as this offers greater insight into the level of diversification within a species or population, which is useful in organisms that have near-identical genomic content but differ in phenotype. The identification of such variable loci can then lead to the characterization of genes linked to unique biological attributes. Here, we describe a competitive hybridization assay using DNA microarrays as a comparative genomics tool to identify nucleotide polymorphisms among closely related strains of Chlamydia trachomatis.
Assuntos
Genoma Bacteriano , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Chlamydia trachomatis/genética , DNA Bacteriano/genética , Células HeLa , Humanos , Hibridização de Ácido NucleicoRESUMO
The swine gut microbiota encompasses a large and diverse population of bacteria that play a significant role in pig health. As such, a number of recent studies have utilized high-throughput sequencing of the 16S rRNA gene to characterize the composition and structure of the swine gut microbiota, often in response to dietary feed additives. It is important to determine which factors shape the composition of the gut microbiota among multiple studies and if certain bacteria are always present in the gut microbiota of swine, independently of study variables such as country of origin and experimental design. Therefore, we performed a meta-analysis using 20 publically available data sets from high-throughput 16S rRNA gene sequence studies of the swine gut microbiota. Next to the "study" itself, the gastrointestinal (GI) tract section that was sampled had the greatest effect on the composition and structure of the swine gut microbiota (P = 0.0001). Technical variation among studies, particularly the 16S rRNA gene hypervariable region sequenced, also significantly affected the composition of the swine gut microbiota (P = 0.0001). Despite this, numerous commonalities were discovered. Among fecal samples, the genera Prevotella, Clostridium, Alloprevotella, and Ruminococcus and the RC9 gut group were found in 99% of all fecal samples. Additionally, Clostridium, Blautia, Lactobacillus, Prevotella, Ruminococcus, Roseburia, the RC9 gut group, and Subdoligranulum were shared by >90% of all GI samples, suggesting a so-called "core" microbiota for commercial swine worldwide. IMPORTANCE The results of this meta-analysis demonstrate that "study" and GI sample location are the most significant factors in shaping the swine gut microbiota. However, in comparisons of results from different studies, some biological factors may be obscured by technical variation among studies. Nonetheless, there are some bacterial taxa that appear to form a core microbiota within the swine GI tract regardless of country of origin, diet, age, or breed. Thus, these results provide the framework for future studies to manipulate the swine gut microbiota for potential health benefits.
RESUMO
Motile bacteria employ one or more methods for movement, including darting, gliding, sliding, swarming, swimming, and twitching. Multidrug-resistant (MDR) Salmonella carries acquired genes that provide resistance to specific antibiotics, and the goal of our study was to determine how antibiotics influence swimming and swarming in such resistant Salmonella isolates. Differences in motility were examined for six MDR Salmonella enterica serovar Typhimurium isolates grown on swimming and swarming media containing subinhibitory concentrations of chloramphenicol, kanamycin, streptomycin, or tetracycline. Chloramphenicol and tetracycline reduced both swimming and swarming, though the effect was more pronounced for swimming than for swarming at the same antibiotic and concentration. Swimming was limited by kanamycin and streptomycin, but these antibiotics had much less influence on decreasing swarming. Interestingly, kanamycin significantly increased swarming in one of the isolates. Removal of the aphA1 kanamycin resistance gene and complementation with either the aphA1 or aphA2 kanamycin resistance gene revealed that aphA1, along with an unidentified Salmonella genetic factor, was required for the kanamycin-enhanced swarming phenotype. Screening of 25 additional kanamycin-resistant isolates identified two that also had significantly increased swarming motility in the presence of kanamycin. This study demonstrated that many variables influence how antibiotics impact swimming and swarming motility in MDR S. Typhimurium, including antibiotic type, antibiotic concentration, antibiotic resistance gene, and isolate-specific factors. Identifying these isolate-specific factors and how they interact will be important to better understand how antibiotics influence MDR Salmonella motility. IMPORTANCESalmonella is one of the most common causes of bacterial foodborne infections in the United States, and the Centers for Disease Control consider multidrug-resistant (MDR) Salmonella a "Serious Threat Level pathogen." Because MDR Salmonella can lead to more severe disease in patients than that caused by antibiotic-sensitive strains, it is important to identify the role that antibiotics may play in enhancing Salmonella virulence. The current study examined several MDR Salmonella isolates and determined the effect that various antibiotics had on Salmonella motility, an important virulence-associated factor. While most antibiotics had a neutral or negative effect on motility, we found that kanamycin actually enhanced MDR Salmonella swarming in some isolates. Subsequent experiments showed this phenotype as being dependent on a combination of several different genetic factors. Understanding the influence that antibiotics have on MDR Salmonella motility is critical to the proper selection and prudent use of antibiotics for efficacious treatment while minimizing potential collateral consequences.
RESUMO
PURPOSE: Non-host-adapted Salmonella serovars, including the common human food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), are opportunistic pathogens that can colonize food-producing animals without causing overt disease. Interventions against Salmonella are needed to enhance food safety, protect animal health and allow the differentiation of infected from vaccinated animals (DIVA). METHODOLOGY: An attenuated S. Typhimurium DIVA vaccine (BBS 866) was characterized for the protection of pigs following challenge with virulent S. Typhimurium. The porcine transcriptional response to BBS 866 vaccination was evaluated. RNA-Seq analysis was used to compare gene expression between BBS 866 and its parent; phenotypic assays were performed to confirm transcriptional differences observed between the strains. RESULTS: Vaccination significantly reduced fever and interferon-gamma (IFNγ) levels in swine challenged with virulent S. Typhimurium compared to mock-vaccinated pigs. Salmonella faecal shedding and gastrointestinal tissue colonization were significantly lower in vaccinated swine. RNA-Seq analysis comparing BBS 866 to its parental S. Typhimurium strain demonstrated reduced expression of the genes involved in cellular invasion and bacterial motility; decreased invasion of porcine-derived IPEC-J2 cells and swimming motility for the vaccine strain was consistent with the RNA-Seq analysis. Numerous membrane proteins were differentially expressed, which was an anticipated gene expression pattern due to the targeted deletion of several regulatory genes in the vaccine strain. RNA-Seq analysis indicated that genes involved in the porcine immune and inflammatory response were differentially regulated at 2 days post-vaccination compared to pre-vaccination. CONCLUSION: Evaluation of the S. Typhimurium DIVA vaccine indicates that vaccination will provide both swine health and food safety benefits.
Assuntos
Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas de DNA/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Derrame de Bactérias , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Fezes/microbiologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Interferon gama/imunologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Suínos , Doenças dos Suínos/microbiologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/imunologiaRESUMO
We report here the genome sequences of two strains of Escherichia coli (ECA-B and ECC-M) that cause bovine mastitis. These strains are known to be associated with persistent and transient mastitis; strain ECA-B causes a transient infection, and ECC-M leads to a persistent infection.
RESUMO
PvuII ribotyping and MLST are each highly discriminatory methods for genotyping Bordetella bronchiseptica, but a direct comparison between these approaches has not been undertaken. The goal of this study was to directly compare the discriminatory power of PvuII ribotyping and MLST, using a single set of geographically and genetically diverse strains, and to determine whether subtyping based on repeat region sequences of the pertactin gene (prn) provides additional resolution. One hundred twenty-two isolates were analyzed, representing 11 mammalian or avian hosts, sourced from the United States, Europe, Israel and Australia. Thirty-two ribotype patterns were identified; one isolate could not be typed. In comparison, all isolates were typeable by MLST and a total of 30 sequence types was identified. An analysis based on Simpson's Index of Diversity (SID) revealed that ribotyping and MLST are nearly equally discriminatory, with SIDs of 0.920 for ribotyping and 0.919 for MLST. Nonetheless, for ten ribotypes and eight MLST sequence types, the alternative method discriminates among isolates that otherwise type identically. Pairing prn repeat region typing with ribotyping yielded 54 genotypes and increased the SID to 0.954. Repeat region typing combined with MLST resulted in 47 genotypes and an SID of 0.944. Given the technical and practical advantages of MLST over ribotyping, and the nominal difference in their SIDs, we conclude MLST is the preferred primary typing tool. We recommend the combination of MLST and prn repeat region typing as a high-resolution, objective and standardized approach valuable for investigating the population structure and epidemiology of B. bronchiseptica.
Assuntos
Bordetella bronchiseptica/classificação , Bordetella bronchiseptica/genética , Tipagem de Sequências Multilocus/normas , Ribotipagem , Austrália , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/imunologia , Bordetella bronchiseptica/isolamento & purificação , Europa (Continente) , Genótipo , Filogenia , Fatores de Virulência de Bordetella/genéticaRESUMO
Previous investigations aimed at determining whether the mammalian prion protein actually facilitates tangible molecular aspects of either a discrete or pleiotropic functional niche have been debated, especially given the apparent absence of overt behavioral or physiological phenotypes associated with several mammalian prion gene (PRNP) knockout experiments. Moreover, a previous evaluation of PRNP knockout cattle concluded that they were normal, suggesting that the bovine prion protein is physiologically dispensable. Herein, we examined the frequency and distribution of nucleotide sequence variation within the coding regions of bovine PRNP and the adjacent Doppel (PRND) gene, a proximal paralogue to PRNP on BTA13. Evaluation of PRND variation demonstrated that the gene does not depart from a strictly neutral model of molecular evolution, and would therefore not be expected to influence tests of selection within PRNP. Collectively, our analyses confirm that intense purifying selection is indeed occurring directly on bovine PRNP, which is indicative of a protein with an important role. These results suggest that the lack of observed fitness effects may not manifest in the controlled environmental conditions used to care for and raise PRNP knockout animals.