RESUMO
By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.
Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , FenótipoRESUMO
ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.
Assuntos
Exorribonucleases , Histonas , Humanos , Exorribonucleases/genética , Histonas/genética , Mutação de Sentido Incorreto/genética , RNA Ribossômico 5,8S , RNA , RNA Mensageiro/genéticaRESUMO
The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.
Assuntos
Mioquimia , Proteínas do Tecido Nervoso , Animais , Autoanticorpos , Axônios , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Genética ReversaRESUMO
Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.
Assuntos
Histonas , Peixe-Zebra , Animais , Cromatina , DNA , Histonas/metabolismo , Humanos , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
BACKGROUND AND AIMS: Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS: With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS: In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS: This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics.
Assuntos
Falência Hepática Aguda , Transplante de Fígado , Criança , Humanos , Recidiva Local de Neoplasia , Falência Hepática Aguda/diagnóstico , Biomarcadores , Transplante de Fígado/efeitos adversos , Europa (Continente)RESUMO
Clonal hematopoiesis because of somatic mutations in hematopoietic stem/progenitor cells is an age-related phenomenon and commonly observed when sequencing blood DNA in elderly individuals. Several genes that are implicated in clonal hematopoiesis are also associated with Mendelian disorders when mutated in the germline, potentially leading to variant misinterpretation. We performed a literature search to identify genes associated with age-related clonal hematopoiesis followed by an OMIM query to identify the subset of genes in which germline variants are associated with Mendelian disorders. We retrospectively screened for diagnostic cases in which the presence of age-related clonal hematopoiesis confounded exome sequencing data interpretation. We found 58 genes in which somatic mutations are implicated in clonal hematopoiesis, while germline variants in the same genes are associated with Mendelian (mostly neurodevelopmental) disorders. Using five selected cases of individuals with suspected monogenic disorders, we illustrate how clonal hematopoiesis in either variant databases or exome sequencing datasets poses a pitfall, potentially leading to variant misclassification and erroneous conclusions regarding gene-disease associations.
Assuntos
Hematopoiese Clonal , Hematopoese , Idoso , Células Germinativas , Hematopoese/genética , Humanos , Mutação , Estudos RetrospectivosRESUMO
Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.
Assuntos
Paralisia Cerebral/patologia , Epilepsia/patologia , Predisposição Genética para Doença , Variação Genética , Perda Auditiva/patologia , Deficiência Intelectual/patologia , Espasticidade Muscular/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , Adolescente , Adulto , Alelos , Animais , Paralisia Cerebral/etiologia , Paralisia Cerebral/metabolismo , Pré-Escolar , Epilepsia/etiologia , Epilepsia/metabolismo , Feminino , Perda Auditiva/etiologia , Perda Auditiva/metabolismo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/etiologia , Deficiência Intelectual/metabolismo , Masculino , Espasticidade Muscular/etiologia , Espasticidade Muscular/metabolismo , Ratos , Adulto JovemRESUMO
Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Cromatina/metabolismo , Feminino , Estudos de Associação Genética , Haploinsuficiência , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Ligação Proteica , Domínios Proteicos , Transcrição GênicaRESUMO
PURPOSE: SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS: Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS: The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION: We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Deficiência Intelectual/genética , Proteínas de Membrana Transportadoras , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Sódio/metabolismo , Bicarbonato de Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/genéticaRESUMO
PURPOSE: RNF213, encoding a giant E3 ubiquitin ligase, has been recognized for its role as a key susceptibility gene for moyamoya disease. Case reports have also implicated specific variants in RNF213 with an early-onset form of moyamoya disease with full penetrance. We aimed to expand the phenotypic spectrum of monogenic RNF213-related disease and to evaluate genotype-phenotype correlations. METHODS: Patients were identified through reanalysis of exome sequencing data of an unselected cohort of unsolved pediatric cases and through GeneMatcher or ClinVar. Functional characterization was done by proteomics analysis and oxidative phosphorylation enzyme activities using patient-derived fibroblasts. RESULTS: We identified 14 individuals from 13 unrelated families with (de novo) missense variants in RNF213 clustering within or around the Really Interesting New Gene (RING) domain. Individuals presented either with early-onset stroke (n = 11) or with Leigh syndrome (n = 3). No genotype-phenotype correlation could be established. Proteomics using patient-derived fibroblasts revealed no significant differences between clinical subgroups. 3D modeling revealed a clustering of missense variants in the tertiary structure of RNF213 potentially affecting zinc-binding suggesting a gain-of-function or dominant negative effect. CONCLUSION: De novo missense variants in RNF213 clustering in the E3 RING or other regions affecting zinc-binding lead to an early-onset syndrome characterized by stroke or Leigh syndrome.
Assuntos
Doença de Leigh , Doença de Moyamoya , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/genética , Doença de Leigh/complicações , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Zinco , Predisposição Genética para Doença , Adenosina Trifosfatases/genéticaRESUMO
The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).
Assuntos
Proteínas de Caenorhabditis elegans , Deficiência Intelectual , Animais , Humanos , Corpo Caloso/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Deficiência Intelectual/genética , Fenótipo , Ligases/genética , Ubiquitinas/genética , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismoRESUMO
Biallelic variants in PTRHD1 have been associated with autosomal recessive intellectual disability, spasticity, and juvenile parkinsonism, with few reported cases. Here, we present the clinical and genetic findings of a female of Austrian origin exhibiting infantile neurodevelopmental abnormalities, intellectual disability, and childhood-onset parkinsonian features, consistent with the established phenotypic spectrum. Notably, she developed genetic generalized epilepsy at age 4, persisting into adulthood. Using diagnostic exome sequencing, we identified a homozygous missense variant (c.365G > A, p.(Arg122Gln)) in PTRHD1 (NM_001013663). In summary, our findings not only support the existing link between biallelic PTRHD1 variants and parkinsonism with neurodevelopmental abnormalities but also suggest a potential extension of the phenotypic spectrum to include generalized epilepsy.
Assuntos
Epilepsia Generalizada , Deficiência Intelectual , Mutação de Sentido Incorreto , Transtornos Parkinsonianos , Humanos , Feminino , Deficiência Intelectual/genética , Epilepsia Generalizada/genética , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/complicações , Homozigoto , Pré-EscolarRESUMO
In patients with neurodevelopmental disorders (NDDs), exome sequencing (ES), the diagnostic gold standard, reveals an underlying monogenic condition in only approximately 40% of cases. We report the case of a female patient with profound NDD who died 30 years ago at the age of 3 years and for whom genome sequencing (GS) now identified a single-exon deletion in TBCK previously missed by ExomeDepth, the copy number variation (CNV) detection algorithm in ES.Deoxyribonucleic acid (DNA) was extracted from frozen muscle tissue of the index patient and the parents' blood. Genome data were analyzed for structural variants and single nucleotide variants (SUVs)/indels as part of the Bavarian Genomes consortium project.Biallelic variants in TBCK, which are linked to the autosomal recessive disorder TBCK syndrome, were detected in the affected individual: a novel frameshift variant and a deletion of exon 23, previously established as common but underrecognized pathogenic variant in individuals with TBCK syndrome. While in the foregoing ES analysis, calling algorithms for (SNVs)/indels were able to identify the frameshift variant, ExomeDepth failed to call the intragenic deletion.Our case illustrates the added value of GS for the detection of single-exon deletions for which calling from ES data remains challenging and confirms that the deletion of exon 23 in TBCK may be underdiagnosed in patients with NDDs. Furthermore, it shows the importance of "molecular or genetic autopsy" allowing genetic risk counseling for family members as well as the end of a diagnostic odyssey of 30 years.
Assuntos
Sequenciamento do Exoma , Transtornos do Neurodesenvolvimento , Proteínas Serina-Treonina Quinases , Adulto , Feminino , Humanos , Éxons/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Deleção de Sequência , Sequenciamento Completo do Genoma , Proteínas Serina-Treonina Quinases/genéticaRESUMO
PURPOSE: Rothmund-Thomson syndrome (RTS) is characterized by poikiloderma, sparse hair, small stature, skeletal defects, cancer, and cataracts, resembling features of premature aging. RECQL4 and ANAPC1 are the 2 known disease genes associated with RTS in >70% of cases. We describe RTS-like features in 5 individuals with biallelic variants in CRIPT (OMIM 615789). METHODS: Two newly identified and 4 published individuals with CRIPT variants were systematically compared with those with RTS using clinical data, computational analysis of photographs, histologic analysis of skin, and cellular studies on fibroblasts. RESULTS: All CRIPT individuals fulfilled the diagnostic criteria for RTS and additionally had neurodevelopmental delay and seizures. Using computational gestalt analysis, CRIPT individuals showed greatest facial similarity with individuals with RTS. Skin biopsies revealed a high expression of senescence markers (p53/p16/p21) and the senescence-associated ß-galactosidase activity was elevated in CRIPT-deficient fibroblasts. RECQL4- and CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors and no or only mild sensitivity to genotoxic stress by ionizing radiation, mitomycin C, hydroxyurea, etoposide, and potassium bromate. CONCLUSION: CRIPT causes an RTS-like syndrome associated with neurodevelopmental delay and epilepsy. At the cellular level, RECQL4- and CRIPT-deficient cells display increased senescence, suggesting shared molecular mechanisms leading to the clinical phenotypes.
Assuntos
Síndrome de Rothmund-Thomson , Humanos , Síndrome de Rothmund-Thomson/genética , Síndrome de Rothmund-Thomson/diagnóstico , Síndrome de Rothmund-Thomson/patologia , Senescência Celular/genética , Dano ao DNA , Hidroxiureia/metabolismo , Fibroblastos , Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.
Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Serina-Treonina Quinases TOR , Humanos , Lactente , Fibroblastos/metabolismo , Doenças Genéticas Inatas/genética , Células HEK293 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
NSD2 dimethylates histone H3 at lysine 36 (H3K36me2) and is located in the Wolf-Hirschhorn syndrome (WHS) critical region. Recent descriptions have delineated loss-of-function (LoF) variants in NSD2 with a distinct disorder. The oncogenic missense variant p.Glu1099Lys occurs somatically in leukemia and has a gain-of-function (GoF) effect. We describe two individuals carrying p.Glu1099Lys as heterozygous de novo germline variant identified by exome sequencing (ES) of blood DNA and subsequently confirmed in two ectodermal tissues. Clinically, these individuals are characterized by intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly. Public cell lines with NSD2 GoF variants had increased K36me2, DNA promoter methylation, and dysregulated RNA expression. NSD2 GoF caused by p.Glu1099Lys is associated with a novel phenotype different from WHS and Rauch-Steindl syndrome (RAUST).
Assuntos
Proteínas Repressoras , Síndrome de Wolf-Hirschhorn , Humanos , Proteínas Repressoras/genética , Mutação com Ganho de Função , Histonas/genética , Histonas/metabolismo , Síndrome de Wolf-Hirschhorn/genética , DNARESUMO
OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.
Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Distonia/enzimologia , Distonia/genética , Epilepsia/genética , Variação Genética , Humanos , Mitocôndrias/genética , Translocases Mitocondriais de ADP e ATP/genética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Proteômica , Sequenciamento do ExomaRESUMO
Dystonia is a prevalent, heterogeneous movement disorder characterized by involuntarily abnormal postures. Biomarkers of dystonia are notoriously lacking. Here, a biomarker is reported for histone lysine methyltransferase (KMT2B)-deficient dystonia, a leading subtype among the individually rare monogenic dystonias. It was derived by applying a support vector machine to an episignature of 113 DNA CpG sites, which, in blood cells, showed significant epigenome-wide association with KMT2B deficiency and at least 1× log-fold change of methylation. This classifier was accurate both when tested on the general population and on samples with various other deficiencies of the epigenetic machinery, thus allowing for definitive evaluation of variants of uncertain significance and identifying patients who may profit from deep brain stimulation, a highly successful treatment in KMT2B-deficient dystonia. Methylation was increased in KMT2B deficiency at all 113 CpG sites. The coefficients of variation of the normalized methylation levels at these sites also perfectly classified the samples with KMT2B-deficient dystonia. Moreover, the mean of the normalized methylation levels correlated well with the age at onset of dystonia (P = 0.003)-being lower in samples with late or incomplete penetrance-thus serving as a predictor of disease onset and severity. Similarly, it may also function in monitoring the recently envisioned treatment of KMT2B deficiency by inhibition of DNA methylation.
Assuntos
Distonia , Distúrbios Distônicos , Biomarcadores , Metilação de DNA/genética , Distonia/genética , Distonia/terapia , Distúrbios Distônicos/genética , Distúrbios Distônicos/terapia , Histona-Lisina N-Metiltransferase/genética , Humanos , MutaçãoRESUMO
PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.
Assuntos
Transtornos do Neurodesenvolvimento , Miosina não Muscular Tipo IIB , Actinas , Cílios/genética , Proteínas Hedgehog/genética , Humanos , Cadeias Pesadas de Miosina/genética , Transtornos do Neurodesenvolvimento/genética , Miosina não Muscular Tipo IIB/genéticaRESUMO
PURPOSE: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.