Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Genomics ; 19(1): 1, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291715

RESUMO

BACKGROUND: Clostridioides difficile infections (CDI) have emerged over the past decade causing symptoms that range from mild, antibiotic-associated diarrhea (AAD) to life-threatening toxic megacolon. In this study, we describe a multiple and isochronal (mixed) CDI caused by the isolates DSM 27638, DSM 27639 and DSM 27640 that already initially showed different morphotypes on solid media. RESULTS: The three isolates belonging to the ribotypes (RT) 012 (DSM 27639) and 027 (DSM 27638 and DSM 27640) were phenotypically characterized and high quality closed genome sequences were generated. The genomes were compared with seven reference strains including three strains of the RT 027, two of the RT 017, and one of the RT 078 as well as a multi-resistant RT 012 strain. The analysis of horizontal gene transfer events revealed gene acquisition incidents that sort the strains within the time line of the spread of their RTs within Germany. We could show as well that horizontal gene transfer between the members of different RTs occurred within this multiple infection. In addition, acquisition and exchange of virulence-related features including antibiotic resistance genes were observed. Analysis of the two genomes assigned to RT 027 revealed three single nucleotide polymorphisms (SNPs) and apparently a regional genome modification within the flagellar switch that regulates the fli operon. CONCLUSION: Our findings show that (i) evolutionary events based on horizontal gene transfer occur within an ongoing CDI and contribute to the adaptation of the species by the introduction of new genes into the genomes, (ii) within a multiple infection of a single patient the exchange of genetic material was responsible for a much higher genome variation than the observed SNPs.


Assuntos
Clostridiales/genética , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Clostridiales/classificação , Clostridiales/citologia , Clostridiales/isolamento & purificação , Flagelos/genética , Flagelos/ultraestrutura , Transferência Genética Horizontal , Genômica , Humanos , Fenótipo , Filogenia
2.
PLoS Biol ; 13(6): e1002169, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26042786

RESUMO

Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Evolução Biológica , Interações Hospedeiro-Patógeno/genética , Receptores de Superfície Celular/genética , Seleção Genética , Animais , Bacillus thuringiensis/patogenicidade , Caenorhabditis elegans/microbiologia , Genoma Bacteriano , Genômica , Genótipo , Proteínas de Insetos , Fenótipo , Virulência
3.
BMC Genomics ; 17: 152, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924200

RESUMO

BACKGROUND: Propionibacterium acnes and Staphylococcus epidermidis live in close proximity on human skin, and both bacterial species can be isolated from normal and acne vulgaris-affected skin sites. The antagonistic interactions between the two species are poorly understood, as well as the potential significance of bacterial interferences for the skin microbiota. Here, we performed simultaneous antagonism assays to detect inhibitory activities between multiple isolates of the two species. Selected strains were sequenced to identify the genomic basis of their antimicrobial phenotypes. RESULTS: First, we screened 77 P. acnes strains isolated from healthy and acne-affected skin, and representing all known phylogenetic clades (I, II, and III), for their antimicrobial activities against 12 S. epidermidis isolates. One particular phylogroup (I-2) exhibited a higher antimicrobial activity than other P. acnes phylogroups. All genomes of type I-2 strains carry an island encoding the biosynthesis of a thiopeptide with possible antimicrobial activity against S. epidermidis. Second, 20 S. epidermidis isolates were examined for inhibitory activity against 25 P. acnes strains. The majority of S. epidermidis strains were able to inhibit P. acnes. Genomes of S. epidermidis strains with strong, medium and no inhibitory activities against P. acnes were sequenced. Genome comparison underlined the diversity of S. epidermidis and detected multiple clade- or strain-specific mobile genetic elements encoding a variety of functions important in antibiotic and stress resistance, biofilm formation and interbacterial competition, including bacteriocins such as epidermin. One isolate with an extraordinary antimicrobial activity against P. acnes harbors a functional ESAT-6 secretion system that might be involved in the antimicrobial activity against P. acnes via the secretion of polymorphic toxins. CONCLUSIONS: Taken together, our study suggests that interspecies interactions could potentially jeopardize balances in the skin microbiota. In particular, S. epidermidis strains possess an arsenal of different mechanisms to inhibit P. acnes. However, if such interactions are relevant in skin disorders such as acne vulgaris remains questionable, since no difference in the antimicrobial activity against, or the sensitivity towards S. epidermidis could be detected between health- and acne-associated strains of P. acnes.


Assuntos
Antibiose/genética , Genoma Bacteriano , Propionibacterium acnes/genética , Staphylococcus epidermidis/genética , Acne Vulgar/microbiologia , Hibridização Genômica Comparativa , DNA Bacteriano/genética , Humanos , Filogenia , Propionibacterium acnes/classificação , Propionibacterium acnes/fisiologia , Análise de Sequência de DNA , Pele/microbiologia , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/fisiologia
4.
Int J Med Microbiol ; 305(8): 828-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26294350

RESUMO

In 2009/2010 an outbreak of Legionnaires' disease with 64 cases including four fatalities took place in the city of Ulm/Neu-Ulm in Germany. L. pneumophila serogroup 1, mAb type Knoxville, sequence type (ST) 62 was identified as the epidemic strain. This strain was isolated from eight patients and from a cooling tower in the city of Ulm. Based on whole genome sequencing data from one patient strain, we identified an Lvh type IV secretion system containing a CRISPR-Cas system. The CRISPR sequence contains 38 spacer DNA sequences. We used these variable DNA spacers to further subtype the outbreak strain as well as six epidemiologically unrelated strains of CRISPR-Cas positive ST62 strains isolated at various regions in Germany. The first 12 spacer DNAs of eight patient isolates and three environmental isolates from the suspected source of infection were analyzed and found to be identical. Spacer DNAs were identified in further six epidemiologically unrelated patient isolates of L. pneumophila of ST62 in addition to the 12 "core" spacers. The presence of new spacer DNAs at the 5' site downstream of the first repeat indicates that these CRISPR-Cas systems seem to be functional. PCR analysis revealed that not all L. pneumophila sg1 ST62 strains investigated exhibited a CRISPR-Cas system. In addition, we could demonstrate that the CRISPR-Cas system is localized on a genomic island (LpuGI-Lvh) which can be excised from the chromosome and therefore may be transferable horizontally to other L. pneumophila strains.


Assuntos
Sistemas CRISPR-Cas , Surtos de Doenças , Variação Genética , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Microbiologia Ambiental , Ilhas Genômicas , Genótipo , Alemanha/epidemiologia , Humanos , Legionella pneumophila/isolamento & purificação , Epidemiologia Molecular
5.
BMC Microbiol ; 14: 169, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24961323

RESUMO

BACKGROUND: Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany. RESULTS: We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4-5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067. CONCLUSIONS: Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Francisella/genética , Francisella/fisiologia , Genoma Bacteriano , Análise de Sequência de DNA , Microbiologia da Água , Animais , Linhagem Celular , Análise por Conglomerados , Francisella/crescimento & desenvolvimento , Francisella/isolamento & purificação , Alemanha , Humanos , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Homologia de Sequência , Cloreto de Sódio/metabolismo , Temperatura , Fatores de Virulência/genética
6.
BMC Genomics ; 14: 640, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053623

RESUMO

BACKGROUND: Propionibacteria are part of the human microbiota. Many studies have addressed the predominant colonizer of sebaceous follicles of the skin, Propionibacterium acnes, and investigated its association with the skin disorder acne vulgaris, and lately with prostate cancer. Much less is known about two other propionibacterial species frequently found on human tissue sites, Propionibacterium granulosum and Propionibacterium avidum. Here we analyzed two and three genomes of P. granulosum and P. avidum, respectively, and compared them to two genomes of P. acnes; we further highlight differences among the three cutaneous species with proteomic and microscopy approaches. RESULTS: Electron and atomic force microscopy revealed an exopolysaccharide (EPS)-like structure surrounding P. avidum cells, that is absent in P. acnes and P. granulosum. In contrast, P. granulosum possesses pili-like appendices, which was confirmed by surface proteome analysis. The corresponding genes were identified; they are clustered with genes encoding sortases. Both, P. granulosum and P. avidum lack surface or secreted proteins for predicted host-interacting factors of P. acnes, including several CAMP factors, sialidases, dermatan-sulphate adhesins, hyaluronidase and a SH3 domain-containing lipoprotein; accordingly, only P. acnes exhibits neuraminidase and hyaluronidase activities. These functions are encoded on previously unrecognized island-like regions in the genome of P. acnes. CONCLUSIONS: Despite their omnipresence on human skin little is known about the role of cutaneous propionibacteria. All three species are associated with a variety of diseases, including postoperative and device-related abscesses and infections. We showed that the three organisms have evolved distinct features to interact with their human host. Whereas P. avidum and P. granulosum produce an EPS-like surface structure and pili-like appendices, respectively, P. acnes possesses a number of unique surface-exposed proteins with host-interacting properties. The different surface properties of the three cutaneous propionibacteria are likely to determine their colonizing ability and pathogenic potential on the skin and at non-skin sites.


Assuntos
Hibridização Genômica Comparativa , Genoma Bacteriano , Interações Hospedeiro-Patógeno/genética , Propionibacterium/genética , DNA Bacteriano/genética , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propionibacterium/citologia , Propionibacterium/ultraestrutura , Análise de Sequência de DNA , Pele/microbiologia
7.
Int J Med Microbiol ; 303(8): 514-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932911

RESUMO

Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.


Assuntos
Amoeba/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Legionella/crescimento & desenvolvimento , Legionella/genética , Análise de Sequência de DNA , Composição de Bases , Genes Bacterianos , Humanos , Legionella/isolamento & purificação , Doença dos Legionários/microbiologia , Dados de Sequência Molecular
8.
J Bacteriol ; 194(16): 4436, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22843577

RESUMO

Here we announce the complete genome sequence of the coenzyme B(12)-producing enteric bacterium Shimwellia blattae (formerly Escherichia blattae). The genome consists of a single chromosome (4,158,636 bp). The genome size is smaller than that of most other enteric bacteria. Genome comparison revealed significant differences from the Escherichia coli genome.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia/genética , Genoma Bacteriano , Análise de Sequência de DNA , Animais , Cromossomos Bacterianos , Baratas/microbiologia , Escherichia/isolamento & purificação , Escherichia/metabolismo , Dados de Sequência Molecular , Vitamina B 12/biossíntese
9.
J Antimicrob Chemother ; 67(1): 91-100, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22001176

RESUMO

BACKGROUND: Integrative and conjugative elements (ICEs) have not been detected in Pasteurella multocida. In this study the multiresistance ICEPmu1 from bovine P. multocida was analysed for its core genes and its ability to conjugatively transfer into strains of the same and different genera. METHODS: ICEPmu1 was identified during whole genome sequencing. Coding sequences were predicted by bioinformatic tools and manually curated using the annotation software ERGO. Conjugation into P. multocida, Mannheimia haemolytica and Escherichia coli recipients was performed by mating assays. The presence of ICEPmu1 and its circular intermediate in the recipient strains was confirmed by PCR and sequence analysis. Integration sites were sequenced. Susceptibility testing of the ICEPmu1-carrying recipients was conducted by broth microdilution. RESULTS: The 82 214 bp ICEPmu1 harbours 88 genes. The core genes of ICEPmu1, which are involved in excision/integration and conjugative transfer, resemble those found in a 66 641 bp ICE from Histophilus somni. ICEPmu1 integrates into a tRNA(Leu) and is flanked by 13 bp direct repeats. It is able to conjugatively transfer to P. multocida, M. haemolytica and E. coli, where it also uses a tRNA(Leu) for integration and produces closely related 13 bp direct repeats. PCR assays and susceptibility testing confirmed the presence and the functional activity of the ICEPmu1-associated resistance genes in the recipient strains. CONCLUSIONS: The observation that the multiresistance ICEPmu1 is present in a bovine P. multocida and can easily spread across strain and genus boundaries underlines the risk of a rapid dissemination of multiple resistance genes, which will distinctly decrease the therapeutic options.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Transferência Genética Horizontal , Pasteurella multocida/genética , Animais , Bovinos , Doenças dos Bovinos/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Mannheimia haemolytica/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/isolamento & purificação , Doenças Respiratórias/microbiologia , Doenças Respiratórias/veterinária , Análise de Sequência de DNA
10.
J Antimicrob Chemother ; 67(1): 84-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22001175

RESUMO

BACKGROUND: In recent years, multiresistant Pasteurella multocida isolates from bovine respiratory tract infections have been identified. These isolates have exhibited resistance to most classes of antimicrobial agents commonly used in veterinary medicine, the genetic basis of which, however, is largely unknown. METHODS: Genomic DNA of a representative P. multocida isolate was subjected to whole genome sequencing. Genes have been predicted by the YACOP program, compared with the SWISSProt/EMBL databases and manually curated using the annotation software ERGO. Susceptibility testing was performed by broth microdilution according to CLSI recommendations. RESULTS: The analysis of one representative P. multocida isolate identified an 82 kb integrative and conjugative element (ICE) integrated into the chromosomal DNA. This ICE, designated ICEPmu1, harboured 11 resistance genes, which confer resistance to streptomycin/spectinomycin (aadA25), streptomycin (strA and strB), gentamicin (aadB), kanamycin/neomycin (aphA1), tetracycline [tetR-tet(H)], chloramphenicol/florfenicol (floR), sulphonamides (sul2), tilmicosin/clindamycin [erm(42)] or tilmicosin/tulathromycin [msr(E)-mph(E)]. In addition, a complete bla(OXA-2) gene was detected, which, however, appeared to be functionally inactive in P. multocida. These resistance genes were organized in two regions of approximately 15.7 and 9.8 kb. Based on the sequences obtained, it is likely that plasmids, gene cassettes and insertion sequences have played a role in the development of the two resistance gene regions within this ICE. CONCLUSIONS: The observation that 12 resistance genes, organized in two resistance gene regions, represent part of an ICE in P. multocida underlines the risk of simultaneous acquisition of multiple resistance genes via a single horizontal gene transfer event.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Pasteurella multocida/genética , Animais , Bovinos , Doenças dos Bovinos/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ordem dos Genes , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/isolamento & purificação , Doenças Respiratórias/microbiologia , Doenças Respiratórias/veterinária , Análise de Sequência de DNA
11.
PLoS Pathog ; 6(8): e1001078, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20865122

RESUMO

Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.


Assuntos
Adaptação Fisiológica/genética , Infecções por Escherichia coli/genética , Escherichia coli/genética , Evolução Molecular , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno/genética , Eletroforese em Gel de Campo Pulsado , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Expressão Gênica , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Bexiga Urinária/microbiologia , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Virulência/genética
12.
Int J Med Microbiol ; 302(1): 4-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22000740

RESUMO

In this study the plasmid pTC, a 90 kb self-conjugative virulence plasmid of the porcine enterotoxigenic Escherichia coli (ETEC) strain EC2173 encoding the STa and STb heat-stable enterotoxins and tetracycline resistance, has been sequenced in two steps. As a result we identified five main distinct regions of pTC: (i) the maintenance region responsible for the extreme stability of the plasmid, (ii) the TSL (toxin-specific locus comprising the estA and estB genes) which is unique and characteristic for pTC, (iii) a Tn10 transposon, encoding tetracycline resistance, (iv) the tra (plasmid transfer) region, and (v) the colE1-like origin of replication. It is concluded that pTC is a self-transmissible composite plasmid harbouring antibiotic resistance and virulence genes. pTC belongs to a group of large conjugative E. coli plasmids represented by NR1 with a widespread tra backbone which might have evolved from a common ancestor. This is the first report of a completely sequenced animal ETEC virulence plasmid containing an antimicrobial resistance locus, thereby representing a selection advantage for spread of pathogenicity in the presence of antimicrobials leading to increased disease potential.


Assuntos
Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , Doenças dos Suínos/microbiologia , Resistência a Tetraciclina/genética , Fatores de Virulência/genética , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/patogenicidade , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Loci Gênicos , Humanos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Plasmídeos/isolamento & purificação , Análise de Sequência de DNA , Suínos , Tetraciclina/farmacologia , Virulência
13.
BMC Genomics ; 12: 577, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22115438

RESUMO

BACKGROUND: Many strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus. RESULTS: The genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle. CONCLUSIONS: The genome of Thermus scotoductus SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to Thermus thermophilus. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of Thermus scotoductus illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.


Assuntos
Genoma Bacteriano , Thermus/genética , Adaptação Biológica/genética , Cromossomos Bacterianos , Hibridização Genômica Comparativa , DNA Bacteriano/genética , Rearranjo Gênico , Transferência Genética Horizontal , Anotação de Sequência Molecular , Análise de Sequência de DNA , Sintenia , Thermus/metabolismo , Thermus thermophilus/genética
14.
Antimicrob Agents Chemother ; 55(5): 2475-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21402855

RESUMO

The mechanism of macrolide-triamilide resistance in Pasteurella multocida has been unknown. During whole-genome sequencing of a multiresistant bovine P. multocida isolate, three new resistance genes, the rRNA methylase gene erm(42), the macrolide transporter gene msr(E), and the macrolide phosphotransferase gene mph(E), were detected. The three genes were PCR amplified, cloned into suitable plasmid vectors, and shown to confer either macrolide-lincosamide resistance [erm(42)] or macrolide-triamilide resistance [msr(E)-mph(E)] in macrolide-susceptible Escherichia coli and P. multocida hosts.


Assuntos
Antibacterianos/farmacologia , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/genética , Doenças Respiratórias/microbiologia , Animais , Proteínas de Bactérias/genética , Bovinos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Pasteurella multocida/patogenicidade
15.
Microbiology (Reading) ; 157(Pt 6): 1750-1760, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21372091

RESUMO

Mastitis represents one of the most significant health problems of dairy herds. The two major causative agents of this disease are Escherichia coli and Staphylococcus aureus. Of the first, its lipopolysaccharide (LPS) is thought to play a prominent role during infection. Here, we report the O-antigen (OPS, O-specific polysaccharide) structure of the LPS from bovine mastitis isolate E. coli 1303. The structure was determined utilizing chemical analyses, mass spectrometry, and 1D and 2D NMR spectroscopy methods. The O-repeating unit was characterized as -[→4)-ß-D-Quip3NAc-(1→3)-α-L-Fucp2OAc-(1→4)-ß-D-Galp-(1→3)-α-D-GalpNAc-(1→]- in which the O-acetyl substitution was non-stoichiometric. The nucleotide sequence of the O-antigen gene cluster of E. coli 1303 was also determined. This cluster, located between the gnd and galF genes, contains 13 putative open reading frames, most of which represent unknown nucleotide sequences that have not been described before. The O-antigen of E. coli 1303 was shown to substitute O-7 of the terminal LD-heptose of the K-12 core oligosaccharide. Interestingly, the non-OPS-substituted core oligosaccharide represented a truncated version of the K-12 outer core - namely terminal LD-heptose and glucose were missing; however, it possessed a third Kdo residue in the inner core. On the basis of structural and genetic data we show that the mastitis isolate E. coli 1303 represents a new serotype and possesses the K-12 core type, which is rather uncommon among human and bovine isolates.


Assuntos
Escherichia coli/química , Lipopolissacarídeos/química , Mastite Bovina/microbiologia , Antígenos O/química , Animais , Sequência de Bases , Sequência de Carboidratos , Bovinos , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Feminino , Humanos , Lipopolissacarídeos/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Família Multigênica , Antígenos O/genética , Análise de Sequência de DNA
16.
Microbiology (Reading) ; 157(Pt 3): 760-773, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21109561

RESUMO

We present the complete genomic sequence of Mycoplasma fermentans, an organism suggested to be associated with the pathogenesis of rheumatoid arthritis in humans. The genome is composed of 977,524 bp and has a mean G+C content of 26.95 mol%. There are 835 predicted protein-coding sequences and a mean coding density of 87.6 %. Functions have been assigned to 58.8 % of the predicted protein-coding sequences, while 18.4 % of the proteins are conserved hypothetical proteins and 22.8 % are hypothetical proteins. In addition, there are two complete rRNA operons and 36 tRNA coding sequences. The largest gene families are the ABC transporter family (42 members), and the functionally heterogeneous group of lipoproteins (28 members), which encode the characteristic prokaryotic cysteine 'lipobox'. Protein secretion occurs through a pathway consisting of SecA, SecD, SecE, SecG, SecY and YidC. Some highly conserved eubacterial proteins, such as GroEL and GroES, are notably absent. The genes encoding DnaK-DnaJ-GrpE and Tig, forming the putative complex of chaperones, are intact, providing the only known control over protein folding. Eighteen nucleases and 17 proteases and peptidases were detected as well as three genes for the thioredoxin-thioreductase system. Overall, this study presents insights into the physiology of M. fermentans, and provides several examples of the genetic basis of systems that might function as virulence factors in this organism.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Mycoplasma fermentans/fisiologia , Análise de Sequência de DNA , Fatores de Virulência/genética , Composição de Bases , Mapeamento Cromossômico , DNA Bacteriano/análise , DNA Bacteriano/genética , Genes Bacterianos , Humanos , Dados de Sequência Molecular , Mycoplasma fermentans/genética , Mycoplasma fermentans/patogenicidade , Alinhamento de Sequência
17.
Arch Microbiol ; 193(12): 883-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21713444

RESUMO

The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum ß-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic E scherichia c oli (EAHEC).


Assuntos
Surtos de Doenças , Escherichia coli Êntero-Hemorrágica/genética , Infecções por Escherichia coli/epidemiologia , Genoma Bacteriano , Adesinas de Escherichia coli/genética , Idoso , Sequência de Bases , Hibridização Genômica Comparativa , DNA Bacteriano/genética , Escherichia coli Êntero-Hemorrágica/classificação , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Escherichia coli Êntero-Hemorrágica/patogenicidade , Feminino , Fímbrias Bacterianas/genética , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Óperon , Filogenia , Plasmídeos , Análise de Sequência de DNA , beta-Lactamases/genética
18.
Front Microbiol ; 10: 478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915059

RESUMO

The slow-growing, anaerobic, coagulase-negative species Staphylococcus saccharolyticus is found on human skin and in clinical specimens but its pathogenic potential is unclear. Here, we investigated clinical isolates and sequenced the genomes of seven strains of S. saccharolyticus. Phylogenomic analyses showed that the closest relative of S. saccharolyticus is Staphylococcus capitis with an average nucleotide identity of 80%. Previously sequenced strains assigned to S. saccharolyticus are misclassified and belong to S. capitis. Based on single nucleotide polymorphisms of the core genome, the population of S. saccharolyticus can be divided into two clades that also differ in a few larger genomic islands as part of the flexible genome. An unexpected feature of S. saccharolyticus is extensive genome decay, with over 300 pseudogenes, indicating ongoing reductive evolution. Many genes of the core metabolism are not functional, rendering the species auxotrophic for several amino acids, which could explain its slow growth and need for fastidious growth conditions. Secreted proteins of S. saccharolyticus were determined; they include stress response proteins such as heat and oxidative stress-related factors, as well as immunodominant staphylococcal surface antigens and enzymes that can degrade host tissue components. The strains secrete lipases and a hyaluronic acid lyase. Hyaluronidase as well as urease activities were detected in biochemical assays, with clade-specific differences. Our study revealed that S. saccharolyticus has adapted its genome, possibly due to a recent change of habitat; moreover, the data imply that the species has tissue-invasive potential and might cause prosthetic joint infections.

19.
Sci Rep ; 8(1): 266, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321635

RESUMO

Finegoldia magna, a Gram-positive anaerobic coccus, is an opportunistic pathogen, associated with medical device-related infections. F. magna is the only described species of the genus Finegoldia. We report the analysis of 17 genomes of Finegoldia isolates. Phylogenomic analyses showed that the Finegoldia population can be divided into two distinct clades, with an average nucleotide identity of 90.7%. One clade contains strains of F. magna, whereas the other clade includes more heterogeneous strains, hereafter tentatively named "Finegoldia nericia". The latter species appears to be more abundant in the human microbiome. Surface structure differences between strains of F. magna and "F. nericia" were detected by microscopy. Strain-specific heterogeneity is high and previously identified host-interacting factors are present only in subsets of "F. nericia" and F. magna strains. However, all genomes encode multiple host factor-binding proteins such as albumin-, collagen-, and immunoglobulin-binding proteins, and two to four copies of CAMP (Christie-Atkins-Munch-Petersen) factors; in accordance, most strains show a positive CAMP reaction for co-hemolysis. Our work sheds new light of the genus Finegoldia and its ability to bind host components. Future research should explore if the genomic differences identified here affect the potential of different Finegoldia species and strains to cause opportunistic infections.


Assuntos
Heterogeneidade Genética , Genoma Bacteriano , Genótipo , Cocos Gram-Positivos/classificação , Cocos Gram-Positivos/genética , Composição de Bases , Ordem dos Genes , Loci Gênicos , Tamanho do Genoma , Genômica/métodos , Infecções por Bactérias Gram-Positivas/microbiologia , Cocos Gram-Positivos/patogenicidade , Cocos Gram-Positivos/ultraestrutura , Interações Hospedeiro-Patógeno , Filogenia , Fatores de Virulência/genética
20.
Genome Biol Evol ; 10(7): 1852-1857, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982603

RESUMO

Pseudomonas aeruginosa is an important opportunistic pathogen in hospitals, responsible for various infections that are difficult to treat due to intrinsic and acquired antibiotic resistance. Here, 20 epidemiologically unrelated strains isolated from patients in a general hospital over a time period of two decades were analyzed using whole genome sequencing. The genomes were compared in order to assess the presence of a predominant clone or sequence type (ST). No clonal structure was identified, but core genome-based single nucleotide polymorphism (SNP) analysis distinguished two major, previously identified phylogenetic groups. Interestingly, most of the older strains isolated between 1994 and 1998 harbored exoU, encoding a cytotoxic phospholipase. In contrast, most strains isolated between 2011 and 2016 were exoU-negative and phylogenetically very distinct from the older strains, suggesting a population shift of nosocomial P. aeruginosa over time. Three out of 20 strains were ST235 strains, a global high-risk clonal lineage; these carried several additional resistance determinants including aac(6')Ib-cr encoding an aminoglycoside N-acetyltransferase that confers resistance to fluoroquinolones. Core genome comparison with ST235 strains from other parts of the world showed that the three strains clustered together with other Brazilian/Argentinean isolates. Despite this regional relatedness, the individuality of each of the three ST235 strains was revealed by core genome-based SNPs and the presence of genomic islands in the accessory genome. Similarly, strain-specific characteristics were detected for the remaining strains, indicative of individual evolutionary histories and elevated genome plasticity.


Assuntos
Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Brasil , Genoma Bacteriano , Humanos , Filogenia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA