Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Immunity ; 57(1): 1-3, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198847

RESUMO

TREM2 is exclusively expressed by microglia in the brain and is strongly associated with Alzheimer's disease risk. In this issue of Immunity, Tagliatti et al. shed light on a novel role of TREM2 in shaping neuronal bioenergetics during development.


Assuntos
Microglia , Neurônios , Encéfalo
2.
Mol Psychiatry ; 29(3): 809-819, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135757

RESUMO

ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Células-Tronco Pluripotentes Induzidas , Metabolismo dos Lipídeos , Camundongos Knockout , Mitocôndrias , Neurônios , Mitocôndrias/metabolismo , Neurônios/metabolismo , Humanos , Animais , Metabolismo dos Lipídeos/fisiologia , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo
3.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38903110

RESUMO

Background: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. This UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. Methods: Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. Results: Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. Conclusions: There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.

4.
Neuron ; 112(16): 2686-2707.e8, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38897209

RESUMO

Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.


Assuntos
Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas , Leucoencefalopatias , Microglia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Microglia/metabolismo , Leucoencefalopatias/genética , Humanos , Camundongos , Células-Tronco Pluripotentes Induzidas/transplante , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Gliose , Receptor de Fator Estimulador de Colônias de Macrófagos
5.
Sci Adv ; 10(14): eadk3674, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569027

RESUMO

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aß42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aß42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aß42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Proteínas tau , Biomarcadores , Peptídeos beta-Amiloides , Fragmentos de Peptídeos
6.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336940

RESUMO

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Tauopatias , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Proteínas tau , Tauopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA