Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 164(5): 1060-1072, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919435

RESUMO

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Metilação de DNA , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/patologia , Sequência de Aminoácidos , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/diagnóstico , Criança , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Tumores Neuroectodérmicos/classificação , Tumores Neuroectodérmicos/diagnóstico , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transdução de Sinais , Transativadores , Proteínas Supressoras de Tumor/genética
2.
Nature ; 580(7803): 396-401, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296180

RESUMO

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


Assuntos
Neoplasias Cerebelares/metabolismo , Mutação em Linhagem Germinativa , Meduloblastoma/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Feminino , Humanos , Masculino , Meduloblastoma/genética , Linhagem , RNA de Transferência/metabolismo , Fatores de Elongação da Transcrição/genética
3.
Nature ; 576(7786): 274-280, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802000

RESUMO

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.


Assuntos
MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , RNA Helicases DEAD-box/genética , DNA Topoisomerases Tipo I/genética , Humanos , Mutação , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Recidiva , Ribonuclease III/genética
4.
Nature ; 555(7696): 321-327, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489754

RESUMO

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Assuntos
Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias/classificação , Neoplasias/genética , Adolescente , Adulto , Criança , Cromotripsia , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Diploide , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Humanos , Terapia de Alvo Molecular , Taxa de Mutação , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Adulto Jovem
6.
Nature ; 547(7663): 311-317, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726821

RESUMO

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Assuntos
Análise Mutacional de DNA , Genoma Humano/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Sequenciamento Completo do Genoma , Carcinogênese/genética , Proteínas de Transporte/genética , Estudos de Coortes , Metilação de DNA , Conjuntos de Dados como Assunto , Epistasia Genética , Genômica , Humanos , Terapia de Alvo Molecular , Proteínas Musculares/genética , Mutação , Oncogenes/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética
7.
Nature ; 530(7588): 57-62, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814967

RESUMO

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/classificação , Meduloblastoma/patologia , Fatores de Transcrição/metabolismo , Animais , Neoplasias Cerebelares/classificação , Feminino , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Genes Reporter/genética , Humanos , Masculino , Meduloblastoma/genética , Camundongos , Reprodutibilidade dos Testes , Peixe-Zebra/genética
8.
Hepatology ; 72(4): 1253-1266, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31925805

RESUMO

BACKGROUND AND AIMS: Lifetime risk of biliary tract cancer (BTC) in primary sclerosing cholangitis (PSC) may exceed 20%, and BTC is currently the leading cause of death in patients with PSC. To open new avenues for management, we aimed to delineate clinically relevant genomic and pathological features of a large panel of PSC-associated BTC (PSC-BTC). APPROACH AND RESULTS: We analyzed formalin-fixed, paraffin-embedded tumor tissue from 186 patients with PSC-BTC from 11 centers in eight countries with all anatomical locations included. We performed tumor DNA sequencing at 42 clinically relevant genetic loci to detect mutations, translocations, and copy number variations, along with histomorphological and immunohistochemical characterization. Regardless of the anatomical localization, PSC-BTC exhibited a uniform molecular and histological characteristic similar to extrahepatic cholangiocarcinoma. We detected a high frequency of genomic alterations typical of extrahepatic cholangiocarcinoma, such as TP53 (35.5%), KRAS (28.0%), CDKN2A (14.5%), and SMAD4 (11.3%), as well as potentially druggable mutations (e.g., HER2/ERBB2). We found a high frequency of nontypical/nonductal histomorphological subtypes (55.2%) and of the usually rare BTC precursor lesion, intraductal papillary neoplasia (18.3%). CONCLUSIONS: Genomic alterations in PSC-BTC include a significant number of putative actionable therapeutic targets. Notably, PSC-BTC shows a distinct extrahepatic morpho-molecular phenotype, independent of the anatomical location of the tumor. These findings advance our understanding of PSC-associated cholangiocarcinogenesis and provide strong incentives for clinical trials to test genome-based personalized treatment strategies in PSC-BTC.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Colangite Esclerosante/complicações , Adolescente , Adulto , Idoso , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/terapia , Criança , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Colangiocarcinoma/terapia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Genes p53 , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Adulto Jovem
9.
Nature ; 511(7510): 428-34, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043047

RESUMO

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Variação Estrutural do Genoma/genética , Meduloblastoma/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Criança , Cromossomos Humanos Par 9/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Meduloblastoma/classificação , Meduloblastoma/patologia , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
10.
BMC Bioinformatics ; 20(1): 272, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138115

RESUMO

BACKGROUND: Establishment of telomere maintenance mechanisms is a universal step in tumor development to achieve replicative immortality. These processes leave molecular footprints in cancer genomes in the form of altered telomere content and aberrations in telomere composition. To retrieve these telomere characteristics from high-throughput sequencing data the available computational approaches need to be extended and optimized to fully exploit the information provided by large scale cancer genome data sets. RESULTS: We here present TelomereHunter, a software for the detailed characterization of telomere maintenance mechanism footprints in the genome. The tool is implemented for the analysis of large cancer genome cohorts and provides a variety of diagnostic diagrams as well as machine-readable output for subsequent analysis. A novel key feature is the extraction of singleton telomere variant repeats, which improves the identification and subclassification of the alternative lengthening of telomeres phenotype. We find that whole genome sequencing-derived telomere content estimates strongly correlate with telomere qPCR measurements (r = 0.94). For the first time, we determine the correlation of in silico telomere content quantification from whole genome sequencing and whole genome bisulfite sequencing data derived from the same tumor sample (r = 0.78). An analogous comparison of whole exome sequencing data and whole genome sequencing data measured slightly lower correlation (r = 0.79). However, this is considerably improved by normalization with matched controls (r = 0.91). CONCLUSIONS: TelomereHunter provides new functionality for the analysis of the footprints of telomere maintenance mechanisms in cancer genomes. Besides whole genome sequencing, whole exome sequencing and whole genome bisulfite sequencing are suited for in silico telomere content quantification, especially if matched control samples are available. The software runs under a GPL license and is available at https://www.dkfz.de/en/applied-bioinformatics/telomerehunter/telomerehunter.html .


Assuntos
Simulação por Computador , Genoma , Neoplasias/genética , Software , Telômero/genética , Sequência de Bases , Glioblastoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Meduloblastoma/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
11.
Int J Cancer ; 144(4): 848-858, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30238975

RESUMO

Tumor mutational burden (TMB) represents a new determinant of clinical benefit from immune checkpoint blockade that identifies responders independent of PD-L1 expression levels and is currently being explored in clinical trials. Although TMB can be measured directly by comprehensive genomic approaches such as whole-genome and exome sequencing, broad availability, short turnaround times, costs and amenability to formalin-fixed and paraffin-embedded tissue support the use of gene panel sequencing for approximating TMB in routine diagnostics. However, data on the parameters influencing panel-based TMB estimation are limited. Here, we report an extensive in silico analysis of the TCGA data set that simulates various panel sizes and compositions. We demonstrate that panel size is a critical parameter that influences confidence intervals (CIs) and cutoff values as well as important test parameters including sensitivity, specificity, and positive predictive value. Moreover, we evaluate the Illumina TSO500 panel, which will be made available for TMB estimation, and propose dynamic, entity-specific cutoff values based on current clinical trial data. Optimizing the cost-benefit ratio, our data suggest that panels between 1.5 and 3 Mbp are ideally suited to estimate TMB with small CIs, whereas smaller panels tend to deliver imprecise TMB estimates for low to moderate TMB (0-30 muts/Mbp), connected with insufficient separation of hypermutated tumors from non-hypermutated tumors.


Assuntos
Análise Mutacional de DNA/métodos , Mutação , Neoplasias/genética , Carga Tumoral/genética , Biomarcadores Tumorais/genética , Simulação por Computador , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/classificação , Neoplasias/patologia , Sequenciamento do Exoma/métodos
12.
Int J Cancer ; 144(9): 2303-2312, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446996

RESUMO

Assessment of Tumor Mutational Burden (TMB) for response stratification of cancer patients treated with immune checkpoint inhibitors is emerging as a new biomarker. Commonly defined as the total number of exonic somatic mutations, TMB approximates the amount of neoantigens that potentially are recognized by the immune system. While whole exome sequencing (WES) is an unbiased approach to quantify TMB, implementation in diagnostics is hampered by tissue availability as well as time and cost constrains. Conversely, panel-based targeted sequencing is nowadays widely used in routine molecular diagnostics, but only very limited data are available on its performance for TMB estimation. Here, we evaluated three commercially available larger gene panels with covered genomic regions of 0.39 Megabase pairs (Mbp), 0.53 Mbp and 1.7 Mbp using i) in silico analysis of TCGA (The Cancer Genome Atlas) data and ii) wet-lab sequencing of a total of 92 formalin-fixed and paraffin-embedded (FFPE) cancer samples grouped in three independent cohorts (non-small cell lung cancer, NSCLC; colorectal cancer, CRC; and mixed cancer types) for which matching WES data were available. We observed a strong correlation of the panel data with WES mutation counts especially for the gene panel >1Mbp. Sensitivity and specificity related to TMB cutpoints for checkpoint inhibitor response in NSCLC determined by wet-lab experiments well reflected the in silico data. Additionally, we highlight potential pitfalls in bioinformatics pipelines and provide recommendations for variant filtering. In summary, our study is a valuable data source for researchers working in the field of immuno-oncology as well as for diagnostic laboratories planning TMB testing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Colorretais/genética , Sequenciamento do Exoma/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Mutação/genética , Biomarcadores Tumorais/genética , Simulação por Computador , Humanos , Carga Tumoral/genética
13.
Int J Cancer ; 145(3): 649-661, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653256

RESUMO

Tyrosine kinase inhibitors currently confer the greatest survival gain for nonsmall cell lung cancer (NSCLC) patients with actionable genetic alterations. Simultaneously, the increasing number of targets and compounds poses the challenge of reliable, broad and timely molecular assays for the identification of patients likely to benefit from novel treatments. Here, we demonstrate the feasibility and clinical utility of comprehensive, NGS-based genetic profiling for routine workup of advanced NSCLC based on the first 3,000 patients analyzed in our department. Following automated extraction of DNA and RNA from formalin-fixed, paraffin-embedded tissue samples, parallel sequencing of DNA and RNA for detection of mutations and gene fusions, respectively, was performed using PCR-based enrichment with an ion semiconductor sequencing platform. Overall, 807 patients (27%) were eligible for currently approved, EGFR-/BRAF-/ALK- and ROS1-directed therapies, while 218 additional cases (7%) with MET, ERBB2 (HER2) and RET alterations could potentially benefit from experimental targeted compounds. In addition, routine capturing of comutations, e.g. TP53 (55%), KEAP1 (11%) and STK11 (11%), as well as the precise typing of fusion partners and involved exons in case of actionable translocations including ALK and ROS1, are prognostic and predictive tools currently gaining importance for further refinement of therapeutic and surveillance strategies. The reliability, low dropout rates (<5%), minimal tissue requirements, fast turnaround times (6 days on average) and lower costs of the diagnostic approach presented here compared to sequential single-gene testing, highlight its practicability in order to support individualized decisions in routine patient care, enrollment in molecularly stratified clinical trials, as well as translational research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , DNA de Neoplasias/genética , Neoplasias Pulmonares/genética , RNA Neoplásico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Estudos de Coortes , Progressão da Doença , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Perfilação da Expressão Gênica , Alemanha/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia , Análise de Sequência de DNA , Análise de Sequência de RNA , Taxa de Sobrevida , Adulto Jovem
14.
Lancet Oncol ; 19(6): 768-784, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29778738

RESUMO

BACKGROUND: Young children with medulloblastoma have a poor overall survival compared with older children, due to use of radiation-sparing therapy in young children. Radiotherapy is omitted or reduced in these young patients to spare them from debilitating long-term side-effects. We aimed to estimate event-free survival and define the molecular characteristics associated with progression-free survival in young patients with medulloblastoma using a risk-stratified treatment strategy designed to defer, reduce, or delay radiation exposure. METHODS: In this multicentre, phase 2 trial, we enrolled children younger than 3 years with newly diagnosed medulloblastoma at six centres in the USA and Australia. Children aged 3-5 years with newly diagnosed, non-metastatic medulloblastoma without any high-risk features were also eligible. Eligible patients were required to start therapy within 31 days from definitive surgery, had a Lansky performance score of at least 30, and did not receive previous radiotherapy or chemotherapy. Patients were stratified postoperatively by clinical and histological criteria into low-risk, intermediate-risk, and high-risk treatment groups. All patients received identical induction chemotherapy (methotrexate, vincristine, cisplatin, and cyclophosphamide), with high-risk patients also receiving an additional five doses of vinblastine. Induction was followed by risk-adapted consolidation therapy: low-risk patients received cyclophosphamide (1500 mg/m2 on day 1), etoposide (100 mg/m2 on days 1 and 2), and carboplatin (area under the curve 5 mg/mL per min on day 2) for two 4-week cycles; intermediate-risk patients received focal radiation therapy (54 Gy with a clinical target volume of 5 mm over 6 weeks) to the tumour bed; and high-risk patients received chemotherapy with targeted intravenous topotecan (area under the curve 120-160 ng-h/mL intravenously on days 1-5) and cyclophosphamide (600 mg/m2 intravenously on days 1-5). After consolidation, all patients received maintenance chemotherapy with cyclophosphamide, topotecan, and erlotinib. The coprimary endpoints were event-free survival and patterns of methylation profiling associated with progression-free survival. Outcome and safety analyses were per protocol (all patients who received at least one dose of induction chemotherapy); biological analyses included all patients with tissue available for methylation profiling. This trial is registered with ClinicalTrials.gov, number NCT00602667, and was closed to accrual on April 19, 2017. FINDINGS: Between Nov 27, 2007, and April 19, 2017, we enrolled 81 patients with histologically confirmed medulloblastoma. Accrual to the low-risk group was suspended after an interim analysis on Dec 2, 2015, when the 1-year event-free survival was estimated to be below the stopping rule boundary. After a median follow-up of 5·5 years (IQR 2·7-7·3), 5-year event-free survival was 31·3% (95% CI 19·3-43·3) for the whole cohort, 55·3% (95% CI 33·3-77·3) in the low-risk cohort (n=23) versus 24·6% (3·6-45·6) in the intermediate-risk cohort (n=32; hazard ratio 2·50, 95% CI 1·19-5·27; p=0·016) and 16·7% (3·4-30·0) in the high-risk cohort (n=26; 3·55, 1·66-7·59; p=0·0011; overall p=0·0021). 5-year progression-free survival by methylation subgroup was 51·1% (95% CI 34·6-67·6) in the sonic hedgehog (SHH) subgroup (n=42), 8·3% (95% CI 0·0-24·0%) in the group 3 subgroup (n=24), and 13·3% (95% CI 0·0-37·6%) in the group 4 subgroup (n=10). Within the SHH subgroup, two distinct methylation subtypes were identified and named iSHH-I and iSHH-II. 5-year progression-free survival was 27·8% (95% CI 9·0-46·6; n=21) for iSHH-I and 75·4% (55·0-95·8; n=21) for iSHH-II. The most common adverse events were grade 3-4 febrile neutropenia (48 patients [59%]), neutropenia (21 [26%]), infection with neutropenia (20 [25%]), leucopenia (15 [19%]), vomiting (15 [19%]), and anorexia (13 [16%]). No treatment-related deaths occurred. INTERPRETATION: The risk-adapted approach did not improve event-free survival in young children with medulloblastoma. However, the methylation subgroup analyses showed that the SHH subgroup had improved progression-free survival compared with the group 3 subgroup. Moreover, within the SHH subgroup, the iSHH-II subtype had improved progression-free survival in the absence of radiation, intraventricular chemotherapy, or high-dose chemotherapy compared with the iSHH-I subtype. These findings support the development of a molecularly driven, risk-adapted, treatment approach in future trials in young children with medulloblastoma. FUNDING: American Lebanese Syrian Associated Charities, St Jude Children's Research Hospital, NCI Cancer Center, Alexander and Margaret Stewart Trust, Sontag Foundation, and American Association for Cancer Research.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/terapia , Irradiação Craniana , Metilação de DNA , Meduloblastoma/genética , Meduloblastoma/terapia , Terapia Neoadjuvante , Fatores Etários , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Austrália , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Quimioterapia Adjuvante , Pré-Escolar , Tomada de Decisão Clínica , Irradiação Craniana/efeitos adversos , Irradiação Craniana/mortalidade , Perfilação da Expressão Gênica , Humanos , Lactente , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Terapia Neoadjuvante/efeitos adversos , Terapia Neoadjuvante/mortalidade , Seleção de Pacientes , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Doses de Radiação , Radioterapia Adjuvante , Medição de Risco , Fatores de Risco , Fatores de Tempo , Estados Unidos
15.
Lancet Oncol ; 19(6): 785-798, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29753700

RESUMO

BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Cerebelares/genética , Metilação de DNA , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Meduloblastoma/genética , Modelos Genéticos , Adolescente , Adulto , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/terapia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Hereditariedade , Humanos , Lactente , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Meduloblastoma/terapia , Linhagem , Fenótipo , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco , Transcriptoma , Sequenciamento do Exoma , Adulto Jovem
16.
Int J Cancer ; 142(12): 2589-2598, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29363116

RESUMO

In order to identify anaplastic lymphoma kinase-driven non-small cell lung cancer (ALK+ NSCLC) patients with a worse outcome, who might require alternative therapeutic approaches, we retrospectively analyzed all stage IV cases treated at our institutions with one of the main echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants V1, V2 and V3 as detected by next-generation sequencing or reverse transcription-polymerase chain reaction (n = 67). Progression under tyrosine kinase inhibitor (TKI) treatment was evaluated both according to Response Evaluation Criteria in Solid Tumors (RECIST) and by the need to change systemic therapy. EML4-ALK fusion variants V1, V2 and V3 were found in 39%, 10% and 51% of cases, respectively. Patients with V3-driven tumors had more metastatic sites at diagnosis than cases with the V1 and V2 variants (mean 3.3 vs. 1.9 and 1.6, p = 0.005), which suggests increased disease aggressiveness. Furthermore, V3-positive status was associated with earlier failure after treatment with first and second-generation ALK TKI (median progression-free survival [PFS] by RECIST in the first line 7.3 vs. 39.3 months, p = 0.01), platinum-based combination chemotherapy (median PFS 5.4 vs. 15.2 months for the first line, p = 0.008) and cerebral radiotherapy (median brain PFS 6.1 months vs. not reached for cerebral radiotherapy during first-line treatment, p = 0.028), and with inferior overall survival (39.8 vs. 59.6 months in median, p = 0.017). Thus, EML4-ALK fusion variant V3 is a high-risk feature for ALK+ NSCLC. Determination of V3 status should be considered as part of the initial workup for this entity in order to select patients for more aggressive surveillance and treatment strategies.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Invasividade Neoplásica/genética , Proteínas de Fusão Oncogênica/genética , Adenocarcinoma de Pulmão/mortalidade , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Falha de Tratamento
17.
Acta Neuropathol ; 131(6): 903-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26671409

RESUMO

With the number of prognostic and predictive genetic markers in neuro-oncology steadily growing, the need for comprehensive molecular analysis of neuropathology samples has vastly increased. We therefore developed a customized enrichment/hybrid-capture-based next-generation sequencing (NGS) gene panel comprising the entire coding and selected intronic and promoter regions of 130 genes recurrently altered in brain tumors, allowing for the detection of single nucleotide variations, fusions, and copy number aberrations. Optimization of probe design, library generation and sequencing conditions on 150 samples resulted in a 5-workday routine workflow from the formalin-fixed paraffin-embedded sample to neuropathological report. This protocol was applied to 79 retrospective cases with established molecular aberrations for validation and 71 prospective cases for discovery of potential therapeutic targets. Concordance of NGS compared to established, single biomarker methods was 98.0 %, with discrepancies resulting from one case where a TERT promoter mutation was not called by NGS and three ATRX mutations not being detected by Sanger sequencing. Importantly, in samples with low tumor cell content, NGS was able to identify mutant alleles that were not detectable by traditional methods. Information derived from NGS data identified potential targets for experimental therapy in 37/47 (79 %) glioblastomas, 9/10 (90 %) pilocytic astrocytomas, and 5/14 (36 %) medulloblastomas in the prospective target discovery cohort. In conclusion, we present the settings for high-throughput, adaptive next-generation sequencing in routine neuropathology diagnostics. Such an approach will likely become highly valuable in the near future for treatment decision making, as more therapeutic targets emerge and genetic information enters the classification of brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas de Sonda Molecular , Mutação/genética , Patologia Molecular/métodos
19.
Nat Med ; 29(4): 917-926, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36928815

RESUMO

The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.


Assuntos
Neoplasias Encefálicas , Glioma , Adolescente , Humanos , Criança , Multiômica , Glioma/diagnóstico , Glioma/genética , Neuropatologia , Metilação de DNA/genética , Mutação , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA