Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 150(6): 1209-22, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980981

RESUMO

During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of the previously suggested reprogramming markers Fbxo15, Fgf4, and Oct4. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc, and Nanog, can activate the pluripotency circuitry.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Análise de Célula Única , Transcriptoma , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcadores Genéticos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Técnicas Analíticas Microfluídicas , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
2.
Genes Chromosomes Cancer ; 60(5): 303-313, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32734664

RESUMO

In vitro assays for clustered DNA lesions will facilitate the analysis of the mechanisms underlying complex genome rearrangements such as chromothripsis, including the recruitment of repair factors to sites of DNA double-strand breaks (DSBs). We present a novel method generating localized DNA DSBs using UV irradiation with photomasks. The size of the damage foci and the spacing between lesions are fully adjustable, making the assay suitable for different cell types and targeted areas. We validated this setup with genomically stable epithelial cells, normal fibroblasts, pluripotent stem cells, and patient-derived primary cultures. Our method does not require a specialized device such as a laser, making it accessible to a broad range of users. Sensitization by 5-bromo-2-deoxyuridine incorporation is not required, which enables analyzing the DNA damage response in post-mitotic cells. Irradiated cells can be cultivated further, followed by time-lapse imaging or used for downstream biochemical analyses, thanks to the high throughput of the system. Importantly, we showed genome rearrangements in the irradiated cells, providing a proof of principle for the induction of structural variants by localized DNA lesions.


Assuntos
Quebras de DNA de Cadeia Dupla , Mutagênese , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/efeitos da radiação , Raios Ultravioleta
3.
Nucleic Acids Res ; 46(16): 8299-8310, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29986092

RESUMO

Mammalian DNA replication is a highly organized and regulated process. Large, Mb-sized regions are replicated at defined times along S-phase. Replication Timing (RT) is thought to play a role in shaping the mammalian genome by affecting mutation rates. Previous analyses relied on somatic RT profiles. However, only germline mutations are passed on to offspring and affect genomic composition. Therefore, germ cell RT information is necessary to evaluate the influences of RT on the mammalian genome. We adapted the RT mapping technique for limited amounts of cells, and measured RT from two stages in the mouse germline - primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). RT in germline cells exhibited stronger correlations to both mutation rate and recombination hotspots density than those of RT in somatic tissues, emphasizing the importance of using correct tissues-of-origin for RT profiling. Germline RT maps exhibited stronger correlations to additional genetic features including GC-content, transposable elements (SINEs and LINEs), and gene density. GC content stratification and multiple regression analysis revealed independent contributions of RT to SINE, gene, mutation, and recombination hotspot densities. Together, our results establish a central role for RT in shaping multiple levels of mammalian genome composition.


Assuntos
Período de Replicação do DNA/genética , Replicação do DNA/genética , Genoma/genética , Células Germinativas/metabolismo , Células-Tronco/metabolismo , Animais , Composição de Bases/genética , Linhagem Celular Tumoral , Células Cultivadas , Elementos de DNA Transponíveis/genética , Feminino , Células Germinativas/citologia , Mutação em Linhagem Germinativa , Masculino , Mamíferos/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Elementos Nucleotídeos Curtos e Dispersos/genética , Células-Tronco/citologia
4.
Nat Rev Genet ; 14(6): 427-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23681063

RESUMO

Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic-stem-cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodelling the genome, including new insights into the function of MYC, and describe the different phases, markers and emerging models of reprogramming.


Assuntos
Epigênese Genética , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Cromatina/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-myc/fisiologia , Análise de Célula Única , Fatores de Transcrição/fisiologia
5.
Proc Natl Acad Sci U S A ; 113(6): 1570-5, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26811475

RESUMO

The neural crest (NC) represents multipotent cells that arise at the interphase between ectoderm and prospective epidermis of the neurulating embryo. The NC has major clinical relevance because it is involved in both inherited and acquired developmental abnormalities. The aim of this study was to establish an experimental platform that would allow for the integration of human NC cells (hNCCs) into the gastrulating mouse embryo. NCCs were derived from pluripotent mouse, rat, and human cells and microinjected into embryonic-day-8.5 embryos. To facilitate integration of the NCCs, we used recipient embryos that carried a c-Kit mutation (W(sh)/W(sh)), which leads to a loss of melanoblasts and thus eliminates competition from the endogenous host cells. The donor NCCs migrated along the dorsolateral migration routes in the recipient embryos. Postnatal mice derived from injected embryos displayed pigmented hair, demonstrating differentiation of the NCCs into functional melanocytes. Although the contribution of human cells to pigmentation in the host was lower than that of mouse or rat donor cells, our results indicate that hNCCs, injected in utero, can integrate into the embryo and form mature functional cells in the animal. This mouse-human chimeric platform allows for a new approach to study NC development and diseases.


Assuntos
Quimera/metabolismo , Embrião de Mamíferos/citologia , Crista Neural/citologia , Pigmentação da Pele , Negro ou Afro-Americano , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , DNA/metabolismo , Fibroblastos/citologia , Gastrulação , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Endogâmicos C57BL , Microinjeções , Reação em Cadeia da Polimerase , Ratos , Especificidade da Espécie , Doadores de Tecidos
6.
Cancer Cell ; 11(2): 133-46, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17292825

RESUMO

Myocardin is known as an important transcriptional regulator in smooth and cardiac muscle development. Here we found that myocardin is frequently repressed during human malignant transformation, contributing to a differentiation defect. We demonstrate that myocardin is a transcriptional target of TGFbeta required for TGFbeta-mediated differentiation of human fibroblasts. Serum deprivation, intact contact inhibition response, and the p16ink4a/Rb pathway contribute to myocardin induction and differentiation. Restoration of myocardin expression in sarcoma cells results in differentiation and inhibition of malignant growth, whereas inactivation of myocardin in normal fibroblasts increases their proliferative potential. Myocardin expression is reduced in multiple types of human tumors. Collectively, our results demonstrate that myocardin is an important suppressive modifier of the malignant transformation process.


Assuntos
Diferenciação Celular , Transformação Celular Neoplásica , Inibidor p16 de Quinase Dependente de Ciclina/antagonistas & inibidores , Fibroblastos/citologia , Proteínas Nucleares/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Western Blotting , Adesão Celular , Proliferação de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilação de DNA , Fibroblastos/metabolismo , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Pulmão/embriologia , Mesoderma/citologia , Mesoderma/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/farmacologia , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador beta/farmacologia
7.
J Cell Sci ; 125(Pt 13): 3144-52, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22427690

RESUMO

Concomitant expression of mutant p53 and oncogenic Ras, leading to cellular transformation, is well documented. However, the mechanisms by which the various mutant p53 categories cooperate with Ras remain largely obscure. From this study we suggest that different mutant p53 categories cooperate with H-Ras in different ways to induce a unique expression pattern of a cancer-related gene signature (CGS). The DNA-contact p53 mutants (p53(R248Q) and p53(R273H)) exhibited the highest level of CGS expression by cooperating with NFκB. Furthermore, the Zn(+2) region conformational p53 mutants (p53(R175H) and p53(H179R)) induced the CGS by elevating H-Ras activity. This elevation in H-Ras activity stemmed from a perturbed function of the p53 transcription target gene, BTG2. By contrast, the L3 loop region conformational mutant (p53(G245S)) did not affect CGS expression. Our findings were further corroborated in human tumor-derived cell lines expressing Ras and the aforementioned mutated p53 proteins. These data might assist in future tailor-made therapy targeting the mutant p53-Ras axis in cancer.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes ras , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Ativação Enzimática , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Mapeamento de Interação de Proteínas , Transcrição Gênica , Transfecção , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Zinco/metabolismo
8.
Dev Cell ; 59(8): 941-960, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653193

RESUMO

In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.


Assuntos
Diferenciação Celular , Linhagem da Célula , Trofoblastos , Trofoblastos/citologia , Trofoblastos/metabolismo , Animais , Humanos , Camundongos , Feminino , Gravidez , Ectoderma/metabolismo , Ectoderma/citologia , Desenvolvimento Embrionário , Reprogramação Celular
9.
Nat Commun ; 15(1): 3270, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627364

RESUMO

Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Heterocromatina/genética , Diferenciação Celular/genética , Metilação de DNA , Epigênese Genética
10.
Curr Opin Genet Dev ; 81: 102084, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451165

RESUMO

For an extended period of time, research on human embryo implantation and early placentation was hindered by ethical limitation and lack of appropriate in vitro models. Recently, an explosion of new research has significantly expanded our knowledge of early human trophoblast development and facilitated the derivation and culture of self-renewing human trophoblast stem cells (hTSCs). Multiple approaches have been undertaken in efforts to derive and understand hTSCs, including from blastocysts, early trophoblast tissue, and, more recently, from human pluripotent stem cells (hPSCs) and somatic cells. In this concise review, we summarize recent advances in derivation of hTSCs, with a focus on derivation from naive and primed hPSCs, as well as via reprogramming of somatic cells into induced hTSCs. Each of these methods harbors distinct advantages and setbacks, which are discussed. Finally, we briefly explore the possibility of the existence of trophectoderm-like hTSCs corresponding to earlier, preimplantation trophoblast cells.


Assuntos
Células-Tronco Pluripotentes , Trofoblastos , Gravidez , Feminino , Humanos , Blastocisto , Embrião de Mamíferos , Diferenciação Celular/genética
11.
Stem Cell Reports ; 18(11): 2174-2189, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37832543

RESUMO

A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.


Assuntos
Metilação de DNA , Células-Tronco Pluripotentes Induzidas , Metilação de DNA/genética , Reprogramação Celular/genética , Haploinsuficiência , Fibroblastos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo
12.
Nat Commun ; 14(1): 3359, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291192

RESUMO

Human trophoblast stem cells (hTSCs) can be derived from embryonic stem cells (hESCs) or be induced from somatic cells by OCT4, SOX2, KLF4 and MYC (OSKM). Here we explore whether the hTSC state can be induced independently of pluripotency, and what are the mechanisms underlying its acquisition. We identify GATA3, OCT4, KLF4 and MYC (GOKM) as a combination of factors that can generate functional hiTSCs from fibroblasts. Transcriptomic analysis of stable GOKM- and OSKM-hiTSCs reveals 94 hTSC-specific genes that are aberrant specifically in OSKM-derived hiTSCs. Through time-course-RNA-seq analysis, H3K4me2 deposition and chromatin accessibility, we demonstrate that GOKM exert greater chromatin opening activity than OSKM. While GOKM primarily target hTSC-specific loci, OSKM mainly induce the hTSC state via targeting hESC and hTSC shared loci. Finally, we show that GOKM efficiently generate hiTSCs from fibroblasts that harbor knockout for pluripotency genes, further emphasizing that pluripotency is dispensable for hTSC state acquisition.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Trofoblastos , Fibroblastos , Células-Tronco Embrionárias , Cromatina/genética , Fator 3 de Transcrição de Octâmero/genética
13.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086404

RESUMO

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Autofagia , Niacinamida/metabolismo
14.
Stem Cell Reports ; 17(6): 1334-1350, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35594859

RESUMO

Cell cycle and differentiation decisions are linked; however, the underlying principles that drive these decisions are unclear. Here, we combined cell-cycle reporter system and single-cell RNA sequencing (scRNA-seq) profiling to study the transcriptomes of embryonic stem cells (ESCs) in the context of cell-cycle states and differentiation. By applying retinoic acid, to G1 and G2/M ESCs, we show that, while both populations can differentiate toward epiblast stem cells (EpiSCs), only G2/M ESCs could differentiate into extraembryonic endoderm cells. We identified Esrrb, a pluripotency factor that is upregulated during G2/M, as a driver of extraembryonic endoderm stem cell (XEN) differentiation. Furthermore, enhancer chromatin states based on wild-type (WT) and ESRRB knockout (KO) ESCs show association of ESRRB with XEN poised enhancers. G1 cells overexpressing Esrrb allow ESCs to produce XENs, while ESRRB-KO ESCs lost their potential to differentiate into XEN. Overall, this study reveals a vital link between Esrrb and cell-cycle states during the exit from pluripotency.


Assuntos
Células-Tronco Embrionárias , Endoderma , Ciclo Celular/genética , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas
15.
Front Cell Dev Biol ; 10: 824629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478965

RESUMO

Combined hormone drugs are the basis for orally administered contraception. However, they are associated with severe side effects that are even more impactful for women in developing countries, where resources are limited. The risk of side effects may be reduced by non-hormonal small molecules which specifically target proteins involved in fertilization. In this study, we present a virtual docking experiment directed to discover molecules that target the crucial fertilization interactions of JUNO (oocyte) and IZUMO1 (sperm). We docked 913,000 molecules to two crystal structures of JUNO and ranked them on the basis of energy-related criteria. Of the 32 tested candidates, two molecules (i.e., Z786028994 and Z1290281203) demonstrated fertilization inhibitory effect in both an in vitro fertilization (IVF) assay in mice and an in vitro penetration of human sperm into hamster oocytes. Despite this clear effect on fertilization, these two molecules did not show JUNO-IZUMO1 interaction blocking activity as assessed by AVidity-based EXtracellular Interaction Screening (AVEXIS). Therefore, further research is required to determine the mechanism of action of these two fertilization inhibitors.

16.
Nat Commun ; 13(1): 3475, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715410

RESUMO

Following fertilization, it is only at the 32-64-cell stage when a clear segregation between cells of the inner cell mass and trophectoderm is observed, suggesting a 'T'-shaped model of specification. Here, we examine whether the acquisition of these two states in vitro, by nuclear reprogramming, share similar dynamics/trajectories. Using a comparative parallel multi-omics analysis (i.e., bulk RNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, RRBS and CNVs) on cells undergoing reprogramming to pluripotency and TSC state we show that each reprogramming system exhibits specific trajectories from the onset of the process, suggesting 'V'-shaped model. We describe in detail the various trajectories toward the two states and illuminate reprogramming stage-specific markers, blockers, facilitators and TSC subpopulations. Finally, we show that while the acquisition of the TSC state involves the silencing of embryonic programs by DNA methylation, during the acquisition of pluripotency these regions are initially defined but retain inactive by the elimination of H3K27ac.


Assuntos
Blastocisto , Reprogramação Celular , Blastocisto/metabolismo , Células Cultivadas , Reprogramação Celular/genética , Metilação de DNA
17.
Carcinogenesis ; 32(12): 1749-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900211

RESUMO

Compelling evidences have rendered the tumor microenvironment a crucial determinant in cancer outcome. Activating transcription factor 3 (ATF3), a stress response transcription factor, is known to have a dichotomous role in tumor cells, acting either as a tumor suppressor or an oncogene in a context-dependent manner. However, its expression and possible role in the tumor microenvironment are hitherto unknown. Here we show that ATF3 is upregulated in the stromal compartment of several types of cancer. Accordingly, Cancer-associated fibroblasts (CAFs) ectopically expressing ATF3 proliferated faster as indicated by increased colony-forming capacity and promoted the growth of adjacent tumor cells when co-injected into nude mice. Utilizing a genome-wide profiling approach, we unraveled a robust gene expression program induced by ATF3 in CAFs. Focusing on a specific subset of genes, we found that the ability of stromal ATF3 to promote cancer progression is mediated by transcriptional repression of CLDN1 and induction of CXCL12 and RGS4. In addition, regulation of LIF, CLDN1, SERPINE2, HSD17B2, ITGA7 and PODXL by ATF3 mediated the increased proliferation capacity of CAFs. In sum, our findings implicate ATF3 as a novel stromal tumor promoter and suggest that targeting ATF3 pathway might be beneficial for anticancer therapy.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Neoplasias/genética , Transcrição Gênica/fisiologia , Western Blotting , Compartimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/metabolismo
18.
Sci Adv ; 7(41): eabj5435, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613777

RESUMO

Neurons within the tumor microenvironment promote cancer progression; thus, their local targeting has potential clinical benefits. We designed PEGylated lipid nanoparticles loaded with a non-opioid analgesic, bupivacaine, to target neurons within breast cancer tumors and suppress nerve-to-cancer cross-talk. In vitro, 100-nm nanoparticles were taken up readily by primary neurons, trafficking from the neuronal body and along the axons. We demonstrate that signaling between triple-negative breast cancer cells (4T1) and neurons involves secretion of cytokines stimulating neurite outgrowth. Reciprocally, neurons stimulated 4T1 proliferation, migration, and survival through secretion of neurotransmitters. Bupivacaine curbs neurite growth and signaling with cancer cells, inhibiting cancer cell viability. In vivo, bupivacaine-loaded nanoparticles intravenously administered suppressed neurons in orthotopic triple-negative breast cancer tumors, inhibiting tumor growth and metastatic dissemination. Overall, our findings suggest that reducing nerve involvement in tumors is important for treating cancer.

19.
Dev Cell ; 56(13): 1900-1916.e5, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34197726

RESUMO

Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays. Surprisingly, Casp9-deficient HFSCs accumulate high levels of cleaved caspase-3 and are improperly cleared due to an essential caspase-3/caspase-9 feedforward loop. These SCs are retained in an apoptotic-engaged state, serving as mitogenic signaling centers by continuously releasing Wnt3 and instructing proliferation. Investigating the underlying mechanism, we reveal a caspase-3/Dusp8/p38 module responsible for Wnt3 induction, which operates in both normal and Casp9-deleted HFSCs. Notably, Casp9-deleted mice display accelerated wound repair and de novo hair follicle regeneration. Taken together, we demonstrate that apoptotic cells represent a dynamic SC niche, from which emanating signals drive SC proliferation and tissue regeneration.


Assuntos
Caspase 3/genética , Caspase 9/genética , Fosfatases de Especificidade Dupla/genética , Regeneração/genética , Proteína Wnt3/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Cicatrização/genética
20.
J Mol Biol ; 432(8): 2754-2798, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32044344

RESUMO

Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.


Assuntos
Autofagia , Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA