Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Geochem Health ; 46(6): 178, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695953

RESUMO

Bottled mineral and spring water constitute one of the main sources of drinking water. Relevant legal acts in each country individually regulate the highest permitted concentrations of harmful substances in these waters. However, current regulations do not take into account newly emerging contaminants such as BPA. Analysis of the chemical composition of 72 bottled waters from the Polish market showed that undesirable elements occur in quantities that do not exceed the maximum permissible concentrations. Special attention should be paid to bottled therapeutic water, which may contain elevated concentrations of some micronutrients, such as Al, B, Ba, Fe, Mn, or Sr contributing to the pattern of health risk with excessive consumption of this type of water. The presence of BPA was confirmed in 25 tested waters. The calculated hazard index values showed that the most exposed group are children up to 12 years of age. The greatest attention should be paid to waters with high mineralisation, for which the calculated risk values are the highest.


Assuntos
Água Potável , Poluentes Químicos da Água , Água Potável/química , Água Potável/análise , Medição de Risco , Humanos , Poluentes Químicos da Água/análise , Polônia , Criança , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/toxicidade , Fenóis/análise , Pré-Escolar , Lactente , Águas Minerais/análise
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768302

RESUMO

Following the glutamatergic theory of schizophrenia and based on our previous study regarding the antipsychotic-like activity of mGlu7 NAMs, we synthesized a new compound library containing 103 members, which were examined for NAM mGlu7 activity in the T-REx 293 cell line expressing a recombinant human mGlu7 receptor. Out of the twenty-two scaffolds examined, active compounds were found only within the quinazolinone chemotype. 2-(2-Chlorophenyl)-6-(2,3-dimethoxyphenyl)-3-methylquinazolin-4(3H)-one (A9-7, ALX-171, mGlu7 IC50 = 6.14 µM) was selective over other group III mGlu receptors (mGlu4 and mGlu8), exhibited satisfactory drug-like properties in preliminary DMPK profiling, and was further tested in animal models of antipsychotic-like activity, assessing the positive, negative, and cognitive symptoms. ALX-171 reversed DOI-induced head twitches and MK-801-induced disruptions of social interactions or cognition in the novel object recognition test and spatial delayed alternation test. On the other hand, the efficacy of the compound was not observed in the MK-801-induced hyperactivity test or prepulse inhibition. In summary, the observed antipsychotic activity profile of ALX-171 justifies the further development of the group of quinazolin-4-one derivatives in the search for a new drug candidate for schizophrenia treatment.


Assuntos
Antipsicóticos , Quinazolinonas , Receptores de Glutamato Metabotrópico , Esquizofrenia , Animais , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Maleato de Dizocilpina , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Desenho de Fármacos
3.
J Enzyme Inhib Med Chem ; 37(1): 211-225, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894953

RESUMO

Considering the allosteric regulation of mGlu receptors for potential therapeutic applications, we developed a group of 1,2,4-oxadiazole derivatives that displayed mGlu4 receptor positive allosteric modulatory activity (EC50 = 282-656 nM). Selectivity screening revealed that they were devoid of activity at mGlu1, mGlu2 and mGlu5 receptors, but modulated mGlu7 and mGlu8 receptors, thus were classified as group III-preferring mGlu receptor agents. None of the compounds was active towards hERG channels or in the mini-AMES test. The most potent in vitro mGlu4 PAM derivative 52 (N-(3-chloro-4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)picolinamide) was readily absorbed after i.p. administration (male Albino Swiss mice) and reached a maximum brain concentration of 949.76 ng/mL. Five modulators (34, 37, 52, 60 and 62) demonstrated significant anxiolytic- and antipsychotic-like properties in the SIH and DOI-induced head twitch test, respectively. Promising data were obtained, especially for N-(4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)-3-methylphenyl)picolinamide (62), whose effects in the DOI-induced head twitch test were comparable to those of clozapine and better than those reported for the selective mGlu4 PAM ADX88178.


Assuntos
Antipsicóticos/farmacologia , Oxidiazóis/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494248

RESUMO

Serotonin receptors are extensively examined by academic and industrial researchers, due to their vital roles, which they play in the organism and constituting therefore important drug targets. Up to very recently, it was assumed that the basic nitrogen in compound structure is a necessary component to make it active within this receptor system. Such nitrogen interacts in its protonated form with the aspartic acid from the third transmembrane helix (D3x32) forming a hydrogen bond tightly fitting the ligand in the protein binding site. However, there are several recent studies that report strong serotonin receptor affinity also for compounds without a basic moiety in their structures. In the study, we carried out a comprehensive in silico analysis of the low-basicity phenomenon of the selected serotonin receptor ligands. We focused on the crystallized representatives of the proteins of 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT2C receptors, and examined the problem both from the ligand- and structure-based perspectives. The study was performed for the native proteins, and for D3x32A mutants. The investigation resulted in the determination of nonstandard structural requirements for activity towards serotonin receptors, which can be used in the design of new nonbasic ligands.


Assuntos
Receptores 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/química , Animais , Sítios de Ligação , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores 5-HT2 de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Relação Estrutura-Atividade
5.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361754

RESUMO

A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous-in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.


Assuntos
Antipsicóticos/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Indóis/farmacologia , Nootrópicos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Triptaminas/farmacologia , Animais , Antipsicóticos/síntese química , Família 2 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/síntese química , Células Hep G2 , Humanos , Indóis/síntese química , Ligantes , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Nootrópicos/síntese química , Ligação Proteica , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Relação Estrutura-Atividade , Triptaminas/síntese química
6.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053718

RESUMO

Molecular modeling approaches are an indispensable part of the drug design process. They not only support the process of searching for new ligands of a given receptor, but they also play an important role in explaining particular activity pathways of a compound. In this study, a comprehensive molecular modeling protocol was developed to explain the observed activity profiles of selected µ opioid receptor agents: two G protein-biased µ opioid receptor agonists(PZM21 and SR-17018), unbiased morphine, and the ß-arrestin-2-biased agonist,fentanyl. The study involved docking and molecular dynamics simulations carried out for three crystal structures of the target at a microsecond scale, followed by the statistical analysis of ligand-protein contacts. The interaction frequency between the modeled compounds and the subsequent residues of a protein during the simulation was also correlated with the output of in vitro and in vivo tests, resulting in the set of amino acids with the highest Pearson correlation coefficient values. Such indicated positions may serve as a guide for designing new G protein-biased ligands of the µ opioid receptor.


Assuntos
Morfina/química , Receptores Opioides/metabolismo , Animais , Fentanila/química , Fentanila/metabolismo , Humanos , Simulação de Dinâmica Molecular , Receptores Opioides/química , Tiofenos/química , Ureia/análogos & derivados , Ureia/química
7.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347827

RESUMO

The cytotoxic activity of several serotonin transporter (SERT) inhibitors and subtype of serotonin receptor 1A (5-HT1A receptor) ligands have been examined in androgen-insensitive human PC-3 prostate and neuroblastoma SH-SY5Y cancer cells. Almost all of the studied compounds (except 5-HT1A receptor agonist (2R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT)) exhibited absolute cytotoxic activity against the examined cancer cells. The compound 4-Fluoro-N-[2-[4-(7-methoxy-1-naphthalenyl)-1-piperazinyl]ethyl]benzamide hydrochloride (S14506) that showed highest activity against neuroblastoma tumors was the 5-HT1A receptor agonist (although not alike other 5-HT1A receptor agonists). On the other hand, the compound 6-nitro-2-(4-undecylpiperazin-1-yl)quinoline hydrochloride (AZ07) that had the highest activity against PC-3 prostate cancer cells was a compound exhibiting antagonistic activity against the 5-HT1A receptor. Thus, compounds of oncotoxic properties S14506 and AZ07 should be evaluated further for their potential use in the prevention and treatment of cancer. Most of the 15 compounds tested exhibited either agonistic or antagonistic activity for both the cyclic adenosine monophosphate (cAMP) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathways in human embryonic kidney 293 (HEK293) cells that overexpress the 5HT1AR gene. However, compounds paroxetine, N-Ac-paroxetine and 2-[4-(cyclobutylmethyl)piperazin-1-yl]-6-nitroquinoline hydrochloride (AB22) simultaneously exhibited antagonistic activity on the cAMP pathway and agonistic activity on the ERK1/2 pathway. Fluoxetine relative to compound AZ07 had almost three times lower cytotoxic activity against PC-3 prostate cancer cells. However, the proapoptotic activity of fluoxetine compared to compound AZ07 is almost two times higher which would suggest that the cytotoxic activity of both compounds may be dependent on different cell death mechanisms. Compound S14506 was found to be an antagonist of the serine-threonine protein kinase B (Akt) pathway. Prosurvival Akt activity may be reversed by Akt antagonists. Therefore, the antagonistic activity of S14506 on the Akt pathway may evoke caspase-3 expression and cytotoxicity. It appears that one should not expect a straightforward relationship between the activation of particular serotonergic pathways by selective serotonin reuptake inhibitors (SSRIs) and 5-HT1A receptor ligands and their cytotoxic or cytoprotective activity. Additionally, nuclear transcription factor κB (NF-κB), which may be involved in 5-HT-dependent biochemical pathways by coordinating different subunits in the formation of a dimer, may regulate the transcription of different transduction pathways. Therefore, it can be suggested that the mechanism of the cytotoxic activity of certain compounds (serotonergic against nonserotonergic) may depend on the compound and cancer type being examined. Docking studies showed that S14506, buspirone and spiperone bind in similar ways in the 5-HT1A receptor model and interacted with similar 5-HT1A receptor residues. S14506 and spiperone were found to be located closer to both phenylalanines in TM6 than buspirone, thus exhibiting more antagonist binding modes.


Assuntos
Carcinogênese/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Células 3T3 , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/química , Antagonistas do Receptor 5-HT1 de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
8.
Pharmacol Rep ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971919

RESUMO

BACKGROUND: The serotonin 5-HT5A receptor has attracted much more research attention, due to the therapeutic potential of its ligands being increasingly recognized, and the possibilities that lie ahead of these findings. There is a growing body of evidence indicating that these ligands have procognitive, pro-social, and anti-depressant properties, which offers new avenues for the development of treatments that could address socially important conditions related to the malfunctioning of the central nervous system. The aim of our study was to unravel the molecular determinants for 5-HT5AR ligands that govern their activity towards the receptor. METHODS: In response to the need for identification of molecular determinants for 5-HT5AR activity, we prepared a comprehensive collection of 5-HT5AR ligands, carefully gathering literature and patent data. Leveraging molecular modeling techniques, such as pharmacophore hypothesis development, docking, and molecular dynamics simulations enables to gain valuable insights into the specific interactions of 5-HT5AR ligand groups with the receptor. RESULTS: The obtained comprehensive set of 2160 compounds was divided into dozens of subsets, and a pharmacophore model was developed for each group. The results from the docking and molecular dynamics simulations have enabled the identification of crucial ligand-protein interactions that are essential for the compound's activity towards 5-HT5AR. CONCLUSIONS: The findings from the molecular modeling study provide valuable insights that can guide medicinal chemists in the development of new 5-HT5AR ligands. Considering the pharmacological significance of these compounds, they have the potential to become impactful treatments for individuals and communities in the future. Understanding how different crystal/cryo-EM structures of 5-HT5AR affect molecular modeling experiments could have major implications for future computational studies on this receptor.

9.
Behav Brain Res ; 449: 114466, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37146718

RESUMO

A growing body of evidence points out the involvement of the µ-opioid receptors in the modulation of stress-related behaviour. It has been suggested that µ-opioid receptor agonists may attenuate behavioural despair following animals' exposure to an acute, inescapable stressor. Moreover, morphine was shown to ameliorate fear memories caused by a traumatic experience. As typical µ-opioid receptor agonists entail a risk of serious side effects and addiction, novel, possibly safer and less addictive agonists of this receptor are currently under investigation. One of them, PZM21, preferentially acting via the G protein signalling pathway, was previously shown to be analgesic, but less addictive than morphine. Here, we aimed to further test this ligand in stress-related behavioural paradigms in mice. The study has shown that, unlike morphine, PZM21 does not decrease immobility in the forced swimming and tail suspension tests. On the other hand, we observed that both mice treated with PZM21 and those receiving morphine presented a slight attenuation of freezing across the consecutive fear memory retrievals in the fear conditioning test. Therefore, our study implies that at the range of tested doses, PZM21, a nonrewarding representative of G protein-biased µ-opioid receptor agonists, may interfere with fear memory consolidation while having no beneficial effects on behavioural despair in mice.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Camundongos , Animais , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Morfina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides/metabolismo , Medo
10.
Nutrients ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807926

RESUMO

Currently used antidepressants do not always provide the desired results, and many patients suffer from treatment-resistant depression. Clinical studies suggest that zinc deficiency (ZnD) may be an important risk factor for depression and might blunt the effect of antidepressants. This study aimed to examine whether ZnD might blunt the effectiveness of antidepressants in the olfactory bulbectomy model (OB) of depression in rats. For this purpose, rats were subjected to the OB model, fed a zinc-deficient diet (3 mg Zn/kg) for 3 weeks, and finally treated with escitalopram (Esc), venlafaxine (Ven) 10 mg/kg, i.p., or combined Esc/Ven (1 mg/kg, i.p.) with zinc (5 mg/kg) for another 3 weeks. Open field (OFT), forced swim (FST), and sucrose intake (SIT) tests were used to evaluate depressive-like behavioral changes. In addition, serum, intracellular, and synaptic Zn concentrations and the level of zinc transporter (ZnT) proteins were analyzed. The OB + ZnD model induced hyperactivity in rats in the OFT, increased immobility time in the FST, and anhedonia in the SIT. Chronic treatment with Esc reduced immobility time in the FST in the OB + ZnD model. Esc/Ven +Zn increased sucrose intake in rats from the OB + ZnD group. The OB + ZnD decreased serum zinc levels and intracellular and synaptic Zn concentration in the prefrontal cortex (PFC) and cerebellum. These changes were normalized by chronic administration of Esc/Ven +Zn. Moreover, OB + ZnD decreased levels of the ZnT1 protein in the PFC and Hp and ZnT3 in Hp. Chronic administration of antidepressants did not alter the levels of ZnT proteins. The OB + ZnD model induces more depressive-like effects than either model alone. Our results show that ZnD may induce drug resistance in rats. Normalizing serum or brain zinc concentration is insufficient to reverse behavioral abnormalities caused by the OB + ZnD model. However, zinc supplementation might improve the effectiveness of antidepressants in reversing particular depression symptoms.


Assuntos
Antidepressivos , Depressão , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Ratos , Sacarose , Zinco
11.
Psychopharmacology (Berl) ; 239(6): 1689-1703, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35234983

RESUMO

RATIONALE: Ketamine and psilocybin belong to the rapid-acting antidepressants but they also produce psychotomimetic effects including timing distortion. It is currently debatable whether these are essential for their therapeutic actions. As depressed patients report that the "time is dragging," we hypothesized that ketamine and psilocybin-like compounds may produce an opposite effect, i.e., time underestimation, purportedly contributing to their therapeutic properties. OBJECTIVES: Timing was tested following administration of (R)- and (S)-ketamine, and psilocybin, psilocin, and norpsilocin in the discrete-trial temporal discrimination task (TDT) in male rats. Timing related to premature responses, and cognitive and unspecific effects of compounds were tested in the 5-choice serial reaction time task (5-CSRTT) in the standard 1-s, and "easier" 2-s stimulus duration conditions, as well as in the vITI variant promoting impulsive responses. RESULTS: (S)-ketamine (15 but not 3.75 or 7.5 mg/kg) shifted psychometric curve to the right in TDT and reduced premature responses in 5-CSRTT, suggesting expected time underestimation, but it also decreased the accuracy of temporal discrimination and increased response and reward latencies, decreased correct responses, and increased incorrect responses. While (R)-ketamine did not affect timing and produced no unspecific actions, it reduced incorrect responses in TDT and increased accuracy in 5-CSRTT, suggesting pro-cognitive effects. Psilocin and psilocybin produced mainly unspecific effects in both tasks, while norpsilocin showed no effects. CONCLUSIONS: Time underestimation produced by (S)-ketamine could be associated with its antidepressant effects; however, it was accompanied with severe behavioral disruption. We also hypothesize that behavioral disruption produced by psychedelics objectively reflects their psychotomimetic-like actions.


Assuntos
Ketamina , Psilocibina , Animais , Antidepressivos/farmacologia , Cognição , Humanos , Ketamina/farmacologia , Masculino , Psilocibina/análogos & derivados , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Ratos , Serotonina/análogos & derivados
12.
Pharmaceutics ; 14(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35056950

RESUMO

Among different approaches to the search for novel-safer and less addictive-opioid analgesics, biased agonism has received the most attention in recent years. Some µ-opioid receptor agonists with G protein bias, including SR compounds, were proposed to induce diminished side effects. However, in many aspects, behavioral effects of those compounds, as well as the mechanisms underlying differences in their action, remain unexplored. Here, we aimed to evaluate the effects of SR-14968 and SR-17018, highly G protein-biased opioid agonists, on antinociception, motor activity and addiction-like behaviors in C57BL/6J mice. The obtained results showed that the compounds induce strong and dose-dependent antinociception. SR-14968 causes high, and SR-17018 much lower, locomotor activity. Both agonists develop reward-associated behavior and physical dependence. The compounds also cause antinociceptive tolerance, however, developing more slowly when compared to morphine. Interestingly, SR compounds, in particular SR-17018, slow down the development of antinociceptive tolerance to morphine and inhibit some symptoms of morphine withdrawal. Therefore, our results indicate that SR agonists possess rewarding and addictive properties, but can positively modulate some symptoms of morphine dependence. Next, we have compared behavioral effects of SR-compounds and PZM21 and searched for a relationship to the substantial differences in molecular interactions that these compounds form with the µ-opioid receptor.

13.
Eur J Med Chem ; 209: 112916, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328102

RESUMO

Among all of the monoaminergic receptors, the 5-HT6R has the highest number of non-basic ligands (approximately 5% of compounds stored in 25th version of ChEMBL database have the strongest basic pKa below 5, calculated using the Instant JChem calculator plugin). These compounds, when devoid of a basic nitrogen, exhibit high affinity and remarkable selectivity. Despite a decade of research, no clues have been given for explanation of such an intriguing phenomenon. Here, a series of analogs of four known 5-HT6R ligands, has been rationally designed to approach this issue. For each of the synthesized 42 compounds, a binding affinity for 5-HT6R has been measured, together with a selectivity profile against 5-HT1AR, 5-HT2AR, 5-HT7R and D2R. Performed induced fit docking and molecular dynamics experiments revealed that no particular interaction was responsible for the activity of non-basic compounds. In fact, a plain N-phenylsulfonylindole (1e) was found to possess a moderate (5-HT6R, Ki = 159 nM) affinity. No other monoaminergic receptor has as simple and selective ligand as this one. Thus, it is stated that it binds to the receptor solely based on its conformation and as such, possesses a minimum amount of features, required for binding. Also, any functional group able to form an additional interaction with the receptor increase the binding affinity, like in the case of two highly active non-basic compounds 3e and 5g (5-HT6R, Ki = 65 nM and 38 nM, respectively).


Assuntos
Desenho de Fármacos , Indóis/química , Receptores de Serotonina/metabolismo , Células HEK293 , Humanos , Indóis/metabolismo , Indóis/farmacologia , Ligantes , Simulação de Dinâmica Molecular , Ensaio Radioligante , Relação Estrutura-Atividade
14.
Eur J Med Chem ; 220: 113533, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049262

RESUMO

The selective serotonin reuptake inhibitors (SSRIs), acting at the serotonin transporter (SERT), are one of the most widely prescribed antidepressant medications. All five approved SSRIs possess either fluorine or chlorine atoms, and there is a limited number of reports describing their analogs with heavier halogens, i.e., bromine and iodine. To elucidate the role of halogen atoms in the binding of SSRIs to SERT, we designed a series of 22 fluoxetine and fluvoxamine analogs substituted with fluorine, chlorine, bromine, and iodine atoms, differently arranged on the phenyl ring. The obtained biological activity data, supported by a thorough in silico binding mode analysis, allowed the identification of two partners for halogen bond interactions: the backbone carbonyl oxygen atoms of E493 and T497. Additionally, compounds with heavier halogen atoms were found to bind with the SERT via a distinctly different binding mode, a result not presented elsewhere. The subsequent analysis of the prepared XSAR sets showed that E493 and T497 participated in the largest number of formed halogen bonds. The XSAR library analysis led to the synthesis of two of the most active compounds (3,4-diCl-fluoxetine 42, SERT Ki = 5 nM and 3,4-diCl-fluvoxamine 46, SERT Ki = 9 nM, fluoxetine SERT Ki = 31 nM, fluvoxamine SERT Ki = 458 nM). We present an example of the successful use of a rational methodology to analyze binding and design more active compounds by halogen atom introduction. 'XSAR library analysis', a new tool in medicinal chemistry, was instrumental in identifying optimal halogen atom substitution.


Assuntos
Fluoxetina/farmacologia , Fluvoxamina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Relação Dose-Resposta a Droga , Fluoxetina/síntese química , Fluoxetina/química , Fluvoxamina/síntese química , Fluvoxamina/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/química , Relação Estrutura-Atividade
15.
J Med Chem ; 64(18): 13279-13298, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34467765

RESUMO

In line with recent clinical trials demonstrating that ondansetron, a 5-HT3 receptor (5-HT3R) antagonist, ameliorates cognitive deficits of schizophrenia and the known procognitive effects of 5-HT6 receptor (5-HT6R) antagonists, we applied the hybridization strategy to design dual-acting 5-HT3/5-HT6R antagonists. We identified the first-in-class compound FPPQ, which behaves as a 5-HT3R antagonist and a neutral antagonist 5-HT6R of the Gs pathway. FPPQ shows selectivity over 87 targets and decent brain penetration. Likewise, FPPQ inhibits phencyclidine (PCP)-induced hyperactivity and displays procognitive properties in the novel object recognition task. In contrast to FPPQ, neither 5-HT6R inverse agonist SB399885 nor neutral 5-HT6R antagonist CPPQ reversed (PCP)-induced hyperactivity. Thus, combination of 5-HT3R antagonism and 5-HT6R antagonism, exemplified by FPPQ, contributes to alleviating the positive-like symptoms. Present findings reveal critical structural features useful in a rational polypharmacological approach to target 5-HT3/5-HT6 receptors and encourage further studies on dual-acting 5-HT3/5-HT6R antagonists for the treatment of psychiatric disorders.


Assuntos
Antipsicóticos/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Nootrópicos/uso terapêutico , Receptores 5-HT3 de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/uso terapêutico , Animais , Antipsicóticos/síntese química , Antipsicóticos/metabolismo , Antipsicóticos/farmacocinética , Combinação de Medicamentos , Cobaias , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/metabolismo , Nootrópicos/farmacocinética , Ondansetron/uso terapêutico , Piperazinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT3 de Serotonina/síntese química , Antagonistas do Receptor 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/uso terapêutico
16.
Bioorg Med Chem ; 18(5): 1958-67, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20138771

RESUMO

Structure-activity relationships of a series of bis-arylic compounds, investigated as 5-HT(7)R ligands, are reported. The main structural modifications involved a central aryl moiety (phenyl, pyridine, diazine, triazine) and the nature and position of an amine-containing aliphatic chain. The affinity of the synthesized compounds (26 nM-10 microM) was systematically correlated with other previously reported series of bis-arylic ligands and rationalized by a ligand-based pharmacophore approach.


Assuntos
Derivados de Benzeno/síntese química , Ligantes , Modelos Moleculares , Receptores de Serotonina/metabolismo , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Linhagem Celular , Humanos , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 185: 111857, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734022

RESUMO

A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.


Assuntos
Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Cognição/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Triptaminas/farmacologia , Animais , Antidepressivos/síntese química , Antidepressivos/química , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Ligantes , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Triptaminas/síntese química , Triptaminas/química , Células Tumorais Cultivadas
18.
J Psychopharmacol ; 33(11): 1447-1455, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31452444

RESUMO

PURPOSE: Like other psychedelics, D-lysergic acid diethylamide (LSD) affects numerous serotonin receptors, and according to the current dogma, the 5-HT2A receptors are considered the main target for its hallucinogenic effects. LSD, however, also displays agonistic activity at the 5-HT5A receptors, which mediate some of LSD-induced behavioural effects. METHODS: Using male Sprague Dawley rats, we examined the effects of 5-HT2A and 5-HT5A receptor antagonists on LSD-induced stimulus control in the two-lever drug discrimination test using a FR10 schedule of reinforcement. RESULTS: In animals trained to discriminate 0.08 mg/kg LSD from vehicle 15 minutes after injection, LSD produced dose-related increases in response, with an ED50 (±95% confidence limits) of 0.0384 (± 0.025-0.051) mg/kg). LSD-like responses were observed when the training dose of LSD was given 5-30 but not 90 minutes before the test. Confirming earlier reports, the 5-HT antagonist ketanserin (2 mg/kg) attenuated the LSD response in 50% of rats, and due to pretreatment with 0.2 and 2 mg/kg MDL 100907, 63% and 67% of animals, respectively, failed to select the LSD lever. We then investigated the effects of two 5-HT5A receptor antagonists, and we found that 56% and 60% of rats pretreated with 3 and 10 mg/kg SB 699551, respectively, failed to select the LSD lever. Due to pretreatment with 0.01 mg/kg ASP 5736, 58% of rats did not select the LSD lever. This dose also reduced the response rate but not the number of rats failing to complete the test. CONCLUSIONS: The present results suggest that antagonists of the 5-HT5A receptor may inhibit subjective effects of LSD in rats.


Assuntos
Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Animais , Sinais (Psicologia) , Aprendizagem por Discriminação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Alucinógenos/administração & dosagem , Ketanserina/farmacologia , Dietilamida do Ácido Lisérgico/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/administração & dosagem
19.
Br J Pharmacol ; 176(23): 4434-4445, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31347704

RESUMO

BACKGROUND AND PURPOSE: The concept of opioid ligands biased towards the G protein pathway with minimal recruitment of ß-arrestin-2 is a promising approach for the development of novel, efficient, and potentially nonaddictive opioid therapeutics. A recently discovered biased µ-opioid receptor agonist, PZM21, showed analgesic effects with reduced side effects. Here, we aimed to further investigate the behavioural and biochemical properties of PZM21. EXPERIMENT APPROACH: We evaluated antinociceptive effects of systemic and intrathecal PZM21 administration. Its addiction-like properties were determined using several behavioural approaches: conditioned place preference, locomotor sensitization, precipitated withdrawal, and self-administration. Also, effects of PZM21 on morphine-induced antinociception, tolerance, and reward were assessed. Effects of PZM21 on striatal release of monoamines were evaluated using brain microdialysis. KEY RESULTS: PZM21 caused long-lasting dose-dependent antinociception. It did not induce reward- and reinforcement-related behaviour; however, its repeated administration led to antinociceptive tolerance and naloxone-precipitated withdrawal symptoms. Pretreatment with PZM21 enhanced morphine-induced antinociception and attenuated the expression of morphine reward. In comparison to morphine, PZM21 administration induced a moderate release of dopamine and a robust release of 5-HT in the striatum. CONCLUSIONS AND IMPLICATIONS: PZM21 exhibited antinociceptive efficacy, without rewarding or reinforcing properties. However, its clinical application may be restricted, as it induces tolerance and withdrawal symptoms. Notably, its ability to diminish morphine reward implies that PZM21 may be useful in treatment of opioid use disorders.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Morfina/antagonistas & inibidores , Tiofenos/farmacologia , Ureia/análogos & derivados , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/síntese química , Animais , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Injeções Intravenosas , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade , Tiofenos/administração & dosagem , Tiofenos/síntese química , Ureia/administração & dosagem , Ureia/síntese química , Ureia/farmacologia
20.
Eur J Med Chem ; 170: 261-275, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904783

RESUMO

The 5-HT7 receptor has recently gained much attention due to its involvement in multiple physiological functions and diseases. The insufficient quality of the available molecular probes prompted design of fluorinated 3-(1-alkyl-1H-imidazol-5-yl)-1H-indoles as a new generation of selective 5-HT7 receptor agonists. A potent and drug-like agonist, 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-4-fluoro-1H-indole (AGH-192, 35, Ki 5-HT7R = 4 nM), was identified by optimizing the halogen bond formation with Ser5.42 as the supposed partner. The compound was characterized by excellent water solubility, high selectivity over related CNS targets, high metabolic stability, oral bioavailability and low cytotoxicity. Rapid absorption into the blood, medium half-life and a high peak concentration in the brain Cmax = 1069 ng/g were found after i.p. (2.5 mg/kg) administration in mice. AGH-192 may thus serve as the long-sought tool compound in the study of 5-HT7 receptor function, as well as a potential analgesic, indicated by the antinociceptive effect observed in a mouse model of neuropathic pain.


Assuntos
Imidazóis/química , Imidazóis/farmacocinética , Indóis/química , Indóis/farmacocinética , Neuralgia/tratamento farmacológico , Agonistas do Receptor de Serotonina/química , Agonistas do Receptor de Serotonina/farmacocinética , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Células HEK293 , Halogenação , Humanos , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Indóis/administração & dosagem , Indóis/uso terapêutico , Masculino , Camundongos , Modelos Moleculares , Neuralgia/metabolismo , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA