Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1047563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589062

RESUMO

Increasing the water use efficiency of crops is an important agricultural goal closely related to the root system -the primary plant organ for water and nutrient acquisition. In an attempt to evaluate the response of root growth and development of soybean to water supply levels, 200 genotypes were grown in a sandy field for 3 years under irrigated and non-irrigated conditions, and 14 root traits together with shoot fresh weight and plant height were investigated. Three-way ANOVA revealed a significant effect of treatments and years on growth of plants, accounting for more than 80% of the total variability. The response of roots to irrigation was consistent over the years as most root traits were improved by irrigation. However, the actual values varied between years because the growth of plants was largely affected by the field microclimatic conditions (i.e., temperature, sunshine duration, and precipitation). Therefore, the best linear unbiased prediction values for each trait were calculated using the original data. Principal component analysis showed that most traits contributed to principal component (PC) 1, whereas average diameter, the ratio of thin and medium thickness root length to total root length contributed to PC2. Subsequently, we focused on selecting genotypes that exhibited significant improvements in root traits under irrigation than under non-irrigated conditions using the increment (I-index) and relative increment (RI-index) indices calculated for all traits. Finally, we screened for genotypes with high stability and root growth over the 3 years using the multi-trait selection index (MTSI).Six genotypes namely, GmJMC130, GmWMC178, GmJMC092, GmJMC068, GmWMC075, and GmJMC081 from the top 10% of genotypes scoring MTSI less than the selection threshold of 7.04 and 4.11 under irrigated and non-irrigated conditions, respectively, were selected. The selected genotypes have great potential for breeding cultivars with improved water usage abilities, meeting the goal of water-saving agriculture.

2.
Rice (N Y) ; 13(1): 81, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306159

RESUMO

BACKGROUND: Rice blast, caused by the ascomycete fungus M. oryzae, is one of the most important diseases of rice. Although many blast resistance (R) genes have been identified and deployed in rice varieties, the molecular mechanisms responsible for the R gene-mediated defense responses are yet not fully understood. RESULTS: In this study, we used comparative transcriptomic analysis to explore the molecular mechanism involved in Piz-t-mediated resistance in a transgenic line containing Piz-t (NPB-Piz-t) compared to Nipponbare (NPB). Clustering and principal component analysis (PCA) revealed that the time-point at 24-h post inoculation (hpi) was the most important factor distinguishing the four time-points, which consisted of four genes of mitogen-activated protein kinases (MAPKs) signaling pathway, one gene related to WRKY DNA-binding domain containing protein, five pathogenesis-related protein (OsPR1s) genes, and three genes of R proteins involving in the most significant protein-protein interaction (PPI) pathway. Using weighted gene co-expression network analysis (WGCNA) to investigate RNA-seq data across 0, 24, 48, and 72 hpi, nine modules with similar patterns expression pattern (SEP) and three modules with differential expression pattern (DEP) between NPB-Piz-t and NPB across 0, 24, 48, and 72 hpi with KJ201 (referred to as Piz-t-KJ201 and NPB-KJ201) were identified. Among these the most representative SEP green-yellow module is associated with photosynthesis, and DEP pink module comprised of two specific expressed nucleotide-binding domain and leucine-rich repeat (NLR) genes of LOC_Os06g17900 and LOC_Os06g17920 of Pi2/9 homologous, three NLR genes of LOC_Os11g11810, LOC_Os11g11770, and LOC_Os11g11920 which are putatively associated with important agronomic traits, and a B3 DNA binding domain containing protein related genes (LOC_Os10g39190). Knockout of LOC_Os10g39190 via CRISPR-Cas9 resulted in plant death at the seedling stage. CONCLUSIONS: The research suggested that Piz-t and multiple NLR network might play important roles in the regulation of the resistance response in the Piz-t-KJ201 interaction system. The identified genes provide an NLR repository to study the rice-M. oryzae interaction system and facilitate the breeding of blast-resistant cultivars in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA