Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400188, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887849

RESUMO

Dysferlin is a multi-functional protein that regulates membrane resealing, calcium homeostasis, and lipid metabolism in skeletal muscle. Genetic loss of dysferlin results in limb girdle muscular dystrophy 2B/2R (LGMD2B/2R) and other dysferlinopathies - rare untreatable muscle diseases that lead to permanent loss of ambulation in humans. The mild disease severity in dysferlin-deficient mice and diverse genotype-phenotype relationships in LGMD2B patients have prompted the development of new in vitro models for personalized studies of dysferlinopathy. Here the first 3-D tissue-engineered hiPSC-derived skeletal muscle ("myobundle") model of LGMD2B is described that exhibits compromised contractile function, calcium-handling, and membrane repair, and transcriptomic changes indicative of impaired oxidative metabolism and mitochondrial dysfunction. In response to the fatty acid (FA) challenge, LGMD2B myobundles display mitochondrial deficits and intracellular lipid droplet (LD) accumulation. Treatment with the ryanodine receptor (RyR) inhibitor dantrolene or the dissociative glucocorticoid vamorolone restores LGMD2B contractility, improves membrane repair, and reduces LD accumulation. Lastly, it is demonstrated that chemically induced chronic RyR leak in healthy myobundles phenocopies LGMD2B contractile and metabolic deficit, but not the loss of membrane repair capacity. Together, these results implicate intramyocellular Ca2+ leak as a critical driver of dysferlinopathic phenotype and validate the myobundle system as a platform to study LGMD2B pathogenesis.

2.
Genes (Basel) ; 14(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37628603

RESUMO

Molecular diagnostics for lung cancer is a well-established standard of care, but how to use the available diagnostic tools for optimal and cost-effective patient care remains unresolved. Here, we show that DNA-only, small gene next-generation sequencing (sNGS) panels (<50 genes) combined with ultra-rapid reflex testing for common fusion transcripts using the Idylla Genefusion assay provide a cost-effective and sufficiently comprehensive testing modality for the majority of lung cancer cases. We also demonstrate the need for additional reflex testing capability on larger DNA and fusion panels for a small subset of lung cancers bearing rare single-nucleotide variants, indels and fusion transcripts and secondary, post-treatment resistance mutations. A similar testing workflow could be adopted for other solid tumor types for which extensive gene/fusion variant profiles are available both in the treatment-naïve and post-therapy settings.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares , Humanos , Patologia Molecular , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Bioensaio , Reflexo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37160316

RESUMO

Autologous and allogeneic hematopoietic stem cell transplantation (HSCT) has revolutionized the therapy of hematolymphoid malignancies. Yet, how to best detect or predict the emergence of HSCT-related complications remain unresolved. Here, we describe a case of donor-derived, transient Alpha Beta (αß) T-cell large granular clonal lymphocytosis and cytopenia that emerged post-HSCT in a patient with a history of gamma delta (γδ) T-cell large granular lymphocytic leukemia (T-LGLL). Clonal unrelatedness of post-transplant T-LGL lymphocytosis to the patient's pretransplant T-LGLL was first identified by T-cell receptor (TCR) PCR showing different sized fragments of rearranged gamma chains, in addition to shift from γδ to αß TCR expression by flow cytometry analyses. Donor-derivation of the patient's post-transplant clonal lymphocytosis was confirmed by serial chimerism analyses of recipient's blood specimens demonstrating 100% donor DNA. Moreover, oncogenic DNMT3A and RUNX1 mutations were detected by next-generation sequencing (NGS) only in post-transplant specimens. Intriguingly, despite continued increase in DNMT3A and RUNX1 mutation load, the patient's clonal lymphocytosis and anemia eventually largely resolved; yet, the observed mutation profile with persistent thrombocytopenia indicated secondary clonal cytopenia of undetermined significance (CCUS) in the absence of overt morphologic evidence of myeloid neoplasm in the marrow. This case illustrates the utility of longitudinal chimerism analysis and NGS testing combined with flow cytometric immunophenotyping to evaluate emerging donor-derived hematolymphoid processes and to properly interpret partial functional engraftment. It may also support the notion that driver mutation-induced microenvironmental changes may paradoxically contribute to reestablishing tissue homeostasis.


Assuntos
Leucemia Linfocítica Granular Grande , Linfocitose , Humanos , Leucemia Linfocítica Granular Grande/genética , Linfocitose/genética , Subunidade alfa 2 de Fator de Ligação ao Core , Hematopoiese Clonal , Metilases de Modificação do DNA , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA