Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Infect Dis ; 21(1): 665, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238234

RESUMO

BACKGROUND: As SARS-CoV-2 testing expands, particularly to widespread asymptomatic testing, high sensitivity point-of-care PCR platforms may optimise potential benefits from pooling multiple patients' samples. METHOD: We tested patients and asymptomatic citizens for SARS-CoV-2, exploring the efficiency and utility of CovidNudge (i) for detection in individuals' sputum (compared to nasopharyngeal swabs), (ii) for detection in pooled sputum samples, and (iii) by modelling roll out scenarios for pooled sputum testing. RESULTS: Across 295 paired samples, we find no difference (p = 0.1236) in signal strength for sputum (mean amplified replicates (MAR) 25.2, standard deviation (SD) 14.2, range 0-60) compared to nasopharyngeal swabs (MAR 27.8, SD 12.4, range 6-56). At 10-sample pool size we find some drop in absolute strength of signal (individual sputum MAR 42.1, SD 11.8, range 13-60 vs. pooled sputum MAR 25.3, SD 14.6, range 1-54; p < 0.0001), but only marginal drop in sensitivity (51/53,96%). We determine a limit of detection of 250 copies/ml for an individual test, rising only four-fold to 1000copies/ml for a 10-sample pool. We find optimal pooled testing efficiency to be a 12-3-1-sample model, yet as prevalence increases, pool size should decrease; at 5% prevalence to maintain a 75% probability of negative first test, 5-sample pools are optimal. CONCLUSION: We describe for the first time the use of sequentially dipped sputum samples for rapid pooled point of care SARS-CoV-2 PCR testing. The potential to screen asymptomatic cohorts rapidly, at the point-of-care, with PCR, offers the potential to quickly identify and isolate positive individuals within a population "bubble".


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virologia , Testes Imediatos , SARS-CoV-2/isolamento & purificação , Escarro/virologia , Testes Diagnósticos de Rotina , Humanos , Limite de Detecção , Nasofaringe/virologia , Sensibilidade e Especificidade , Carga Viral
2.
Lancet Microbe ; 1(7): e300-e307, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964211

RESUMO

BACKGROUND: Access to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing. METHODS: Between April and May, 2020, we obtained two nasopharyngeal swab samples from individuals in three hospitals in London and Oxford (UK). Samples were collected from three groups: self-referred health-care workers with suspected COVID-19; patients attending emergency departments with suspected COVID-19; and hospital inpatient admissions with or without suspected COVID-19. For the CovidNudge test, nasopharyngeal swabs were inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as sample adequacy control. Swab samples were tested in parallel using the CovidNudge platform, and with standard laboratory RT-PCR using swabs in viral transport medium for processing in a central laboratory. The primary analysis was to compare the sensitivity and specificity of the point-of-care CovidNudge test with laboratory-based testing. FINDINGS: We obtained 386 paired samples: 280 (73%) from self-referred health-care workers, 15 (4%) from patients in the emergency department, and 91 (23%) hospital inpatient admissions. Of the 386 paired samples, 67 tested positive on the CovidNudge point-of-care platform and 71 with standard laboratory RT-PCR. The overall sensitivity of the point-of-care test compared with laboratory-based testing was 94% (95% CI 86-98) with an overall specificity of 100% (99-100). The sensitivity of the test varied by group (self-referred healthcare workers 94% [95% CI 85-98]; patients in the emergency department 100% [48-100]; and hospital inpatient admissions 100% [29-100]). Specificity was consistent between groups (self-referred health-care workers 100% [95% CI 98-100]; patients in the emergency department 100% [69-100]; and hospital inpatient admissions 100% [96-100]). Point of care testing performance was similar during a period of high background prevalence of laboratory positive tests (25% [95% 20-31] in April, 2020) and low prevalence (3% [95% 1-9] in inpatient screening). Amplification of viral nucleocapsid (n1, n2, and n3) and envelope protein gene (e-gene) were most sensitive for detection of spiked SARS-CoV-2 RNA. INTERPRETATION: The CovidNudge platform was a sensitive, specific, and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The device, which has been implemented in UK hospitals since May, 2020, could enable rapid decisions for clinical care and testing programmes. FUNDING: National Institute of Health Research (NIHR) Imperial Biomedical Research Centre, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University in partnership with Public Health England, NIHR Biomedical Research Centre Oxford, and DnaNudge.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Testes Imediatos , RNA Viral/genética , Sensibilidade e Especificidade
3.
BMJ Open ; 5(5): e006606, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25991447

RESUMO

BACKGROUND AND OBJECTIVES: Vital signs are usually recorded at 4-8 h intervals in hospital patients, and deterioration between measurements can have serious consequences. The primary study objective was to assess agreement between a new ultra-low power, wireless and wearable surveillance system for continuous ambulatory monitoring of vital signs and a widely used clinical vital signs monitor. The secondary objective was to examine the system's ability to automatically identify and reject invalid physiological data. SETTING: Single hospital centre. PARTICIPANTS: Heart and respiratory rate were recorded over 2 h in 20 patients undergoing elective surgery and a second group of 41 patients with comorbid conditions, in the general ward. OUTCOME MEASURES: Primary outcome measures were limits of agreement and bias. The secondary outcome measure was proportion of data rejected. RESULTS: The digital patch provided reliable heart rate values in the majority of patients (about 80%) with normal sinus rhythm, and in the presence of abnormal ECG recordings (excluding aperiodic arrhythmias such as atrial fibrillation). The mean difference between systems was less than ±1 bpm in all patient groups studied. Although respiratory data were more frequently rejected as invalid because of the high sensitivity of impedance pneumography to motion artefacts, valid rates were reported for 50% of recordings with a mean difference of less than ±1 brpm compared with the bedside monitor. Correlation between systems was statistically significant (p<0.0001) for heart and respiratory rate, apart from respiratory rate in patients with atrial fibrillation (p=0.02). CONCLUSIONS: Overall agreement between digital patch and clinical monitor was satisfactory, as was the efficacy of the system for automatic rejection of invalid data. Wireless monitoring technologies, such as the one tested, may offer clinical value when implemented as part of wider hospital systems that integrate and support existing clinical protocols and workflows.


Assuntos
Assistência Ambulatorial/métodos , Monitorização Fisiológica/instrumentação , Tecnologia sem Fio , Estudos de Viabilidade , Frequência Cardíaca , Humanos , Londres/epidemiologia , Monitorização Fisiológica/tendências , Taxa Respiratória , Tecnologia sem Fio/instrumentação , Tecnologia sem Fio/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA