Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO Rep ; 23(6): e54105, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35373503

RESUMO

Maintenance and homeostasis of the stem cell niche (SCN) in the Arabidopsis root is essential for growth and development of all root cell types. The SCN is organized around a quiescent center (QC) maintaining the stemness of cells in direct contact. The key transcription factors (TFs) WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and PLETHORAs (PLTs) are expressed in the SCN where they maintain the QC and regulate distal columella stem cell (CSC) fate. Here, we describe the concerted mutual regulation of the key TFs WOX5 and PLTs on a transcriptional and protein interaction level. Additionally, by applying a novel SCN staining method, we demonstrate that both WOX5 and PLTs regulate root SCN homeostasis as they control QC quiescence and CSC fate interdependently. Moreover, we uncover that some PLTs, especially PLT3, contain intrinsically disordered prion-like domains (PrDs) that are necessary for complex formation with WOX5 and its recruitment to subnuclear microdomains/nuclear bodies (NBs) in the CSCs. We propose that this partitioning of PLT-WOX5 complexes to NBs, possibly by phase separation, is important for CSC fate determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema , Raízes de Plantas , Nicho de Células-Tronco , Células-Tronco/metabolismo
2.
Anal Chem ; 94(43): 14835-14845, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269894

RESUMO

AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months. Instead, we developed a highly sensitive (5 ng/mL limit of quantification) method using a hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approach for quantification of the two codosed antibodies in serum and nasal lining fluid (NLF), a rare matrix. The method was optimized by careful selection of multiple reaction monitoring, capture reagents, magnetic beads, chromatographic conditions, evaluations of selectivity, and matrix effect. The final assay used viral spike protein receptor-binding domain as capture reagent and signature proteotypic peptides from the complementarity-determining region of each mAb for detection. In contrast to other methods of similar/superior sensitivity, our approach did not require multidimensional separations and can be operated in an analytical flow regime, ensuring high throughput and robustness required for clinical analysis at scale. The sensitivity of this method significantly exceeds typical sensitivity of ∼100 ng/mL for analytical flow 1D LBA-LC-MS/MS methods for large macromolecules, such as antibodies. Furthermore, infection and vaccination status did not impact method performance, ensuring method robustness and applicability to a broad patient population. This report demonstrated the general applicability of the hybrid LBA-LC-MS/MS approach to platform quantification of antibodies with high sensitivity and reproducibility, with specialized extension to matrices of increasing interest, such as NLF.


Assuntos
COVID-19 , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , SARS-CoV-2 , Reprodutibilidade dos Testes , Anticorpos Monoclonais/análise , Indicadores e Reagentes , Anticorpos Antivirais
3.
Mol Syst Biol ; 17(6): e9864, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132490

RESUMO

Understanding stem cell regulatory circuits is the next challenge in plant biology, as these cells are essential for tissue growth and organ regeneration in response to stress. In the Arabidopsis primary root apex, stem cell-specific transcription factors BRAVO and WOX5 co-localize in the quiescent centre (QC) cells, where they commonly repress cell division so that these cells can act as a reservoir to replenish surrounding stem cells, yet their molecular connection remains unknown. Genetic and biochemical analysis indicates that BRAVO and WOX5 form a transcription factor complex that modulates gene expression in the QC cells to preserve overall root growth and architecture. Furthermore, by using mathematical modelling we establish that BRAVO uses the WOX5/BRAVO complex to promote WOX5 activity in the stem cells. Our results unveil the importance of transcriptional regulatory circuits in plant stem cell development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Meristema/genética , Meristema/metabolismo , Nitrilas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
Front Plant Sci ; 13: 1052107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452084

RESUMO

Plants as sessile organisms are constantly exposed to changing environmental conditions, challenging their growth and development. Indeed, not only above-ground organs but also the underground root system must adapt accordingly. Consequently, plants respond to these constraints at a gene-regulatory level to ensure their survival and well-being through key transcriptional regulators involved in different developmental processes. Recently, intrinsically disordered domains within these regulators are emerging as central nodes necessary not only for interactions with other factors but also for their partitioning into biomolecular condensates, so-called bodies, possibly driven by phase separation. Here, we summarize the current knowledge about body-forming transcriptional regulators important for plant development and highlight their functions in a possible environmental context. In this perspective article, we discuss potential mechanisms for the formation of membrane-less bodies as an efficient and dynamic program needed for the adaptation to external cues with a particular focus on the Arabidopsis root. Hereby, we aim to provide a perspective for future research on transcriptional regulators to investigate body formation as an expeditious mechanism of plant-environment interactions.

5.
Front Plant Sci ; 10: 726, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231408

RESUMO

Signal perception and transmission of the plant hormone ethylene are mediated by a family of receptor histidine kinases located at the Golgi-ER network. Similar to bacterial and other plant receptor kinases, these receptors work as dimers or higher molecular weight oligomers at the membrane. Sequence analysis and functional studies of different isoforms suggest that the ethylene receptor family is classified into two subfamilies. In Arabidopsis, the type-I subfamily has two members (ETR1 and ERS1) and the type-II subfamily has three members (ETR2, ERS2, and EIN4). Whereas subfamily-I of the Arabidopsis receptors and their interactions with downstream elements in the ethylene pathway has been extensively studied in the past; related information on subfamily-II is sparse. In order to dissect the role of type-II receptors in the ethylene pathway and to decode processes associated with this receptor subfamily on a quantitative molecular level, we have applied biochemical and spectroscopic studies on purified recombinant receptors and downstream elements of the ethylene pathway. To this end, we have expressed purified ETR2 as a prototype of the type-II subfamily, ETR1 for the type-I subfamily and downstream ethylene pathway proteins CTR1 and EIN2. Functional folding of the purified receptors was demonstrated by CD spectroscopy and autokinase assays. Quantitative analysis of protein-protein interactions (PPIs) by microscale thermophoresis (MST) revealed that ETR2 has similar affinities for CTR1 and EIN2 as previously reported for the subfamily-I prototype ETR1 suggesting similar roles in PPI-mediated signal transfer for both subfamilies. We also used in planta fluorescence studies on transiently expressed proteins in Nicotiana benthamiana leaf cells to analyze homo- and heteromer formation of receptors. These studies show that type-II receptors as well as the type-I receptors form homo- and heteromeric complexes at these conditions. Notably, type-II receptor homomers and type-II:type-I heteromers are more stable than type-I homomers as indicated by their lower dissociation constants obtained in microscale thermophoresis studies. The enhanced stability of type-II complexes emphasizes the important role of type-II receptors in the ethylene pathway.

7.
Curr Opin Plant Biol ; 40: 15-21, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28715768

RESUMO

Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Microdomínios da Membrana/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo
8.
Int J Med Educ ; 7: 375-381, 2016 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27864919

RESUMO

OBJECTIVE: This investigation was performed to determine how students in a health sciences program utilize and explain techniques within blood pressure measurement using a novel assessment, and changes associated with greater curricular exposure. METHODS: An exploratory, qualitative and quantitative study was conducted using a 'Think Aloud' design with protocol analysis. Following familiarization, participants performed the task of measuring blood pressure on a reference subject while stating their thought processes. A trained practitioner recorded each participant's procedural proficiency using a standardized rubric. There were 112 participants in the study with varying levels of curricular exposure to blood pressure measurement. RESULTS: Four trends are noted. Specifically, a trend was observed wherein a marked increase in procedural proficiency with a plateau occurred (e.g. released cuff pressure 2-4 mmHg, 10%, 60%, 83%, 82%). Secondly, a trend was observed with improvement across groups (e.g. cuff placed snugly/smoothly on upper arm, 20%, 60%, 81%, and 91%). Other trends included a marked improvement with subsequent decrease, and an improvement without achieving proficiency (e.g. palpation of the brachial pulse, 5%, 90%, 81%, 68%, appropriate size cuff, 17%, 40%, 33%, 41%, respectively). Qualitatively, transcript interpretation resulted in a need for clarification in the way blood pressure procedure is instructed in the curriculum. CONCLUSIONS: The current investigation provides a snapshot of proficiency in blood pressure assessment across a curriculum and highlights considerations for best instructional practices, including the use of Think Aloud. Consequently, medical educators should use qualitative and quantitative assessments concurrently to determine achievement of blood pressure skill proficiency.


Assuntos
Determinação da Pressão Arterial , Competência Clínica , Educação de Graduação em Medicina/métodos , Avaliação Educacional/métodos , Estudantes de Medicina , Determinação da Pressão Arterial/métodos , Determinação da Pressão Arterial/normas , Currículo , Educação de Graduação em Medicina/normas , Docentes de Medicina/organização & administração , Humanos , Narração , Pensamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA