Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Hum Mol Genet ; 32(1): 151-160, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981053

RESUMO

Filamin A (FLNA) is a cytoplasmic actin binding protein, recently shown to be expressed as a long and short isoform. Mutations in FLNA are associated with a wide spectrum of disorders, including an X-linked form of chronic intestinal pseudo-obstruction (CIPO). However, the role of FLNA in intestinal development and function is largely unknown. In this study, we show that FLNA is expressed in the muscle layer of the small intestine from early human fetal stages. Expression of FLNA variants associated with CIPO, blocked expression of the long flna isoform and led to an overall reduction of RNA and protein levels. As a consequence, contractility of human intestinal smooth muscle cells was affected. Lastly, our transgenic zebrafish line showed that the flna long isoform is required for intestinal elongation and peristalsis. Histological analysis revealed structural and architectural changes in the intestinal smooth muscle of homozygous fish, likely triggered by the abnormal expression of intestinal smooth muscle markers. No defect in the localization or numbers of enteric neurons was observed. Taken together, our study demonstrates that the long FLNA isoform contributes to intestinal development and function. Since loss of the long FLNA isoform does not seem to affect the enteric nervous system, it likely results in a myopathic form of CIPO, bringing new insights to disease pathogenesis.


Assuntos
Pseudo-Obstrução Intestinal , Peixe-Zebra , Animais , Humanos , Filaminas/genética , Filaminas/metabolismo , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/patologia , Intestinos/patologia , Isoformas de Proteínas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados
2.
Gastroenterology ; 162(1): 179-192.e11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425092

RESUMO

BACKGROUND AND AIMS: The enteric nervous system, which regulates many gastrointestinal functions, is derived from neural crest cells (NCCs). Defective NCC migration during embryonic development may lead to enteric neuropathies such as Hirschsprung's disease (hindgut aganglionosis). Sox10 is known to be essential for cell migration but downstream molecular events regulating early NCC migration have not been fully elucidated. This study aimed to determine how Sox10 regulates migration of sacral NCCs toward the hindgut using Dominant megacolon mice, an animal model of Hirschsprung's disease with a Sox10 mutation. METHODS: We used the following: time-lapse live cell imaging to determine the migration defects of mutant sacral NCCs; genome-wide microarrays, site-directed mutagenesis, and whole embryo culture to identify Sox10 targets; and liquid chromatography and tandem mass spectrometry to ascertain downstream effectors of Sox10. RESULTS: Sacral NCCs exhibited retarded migration to the distal hindgut in Sox10-null embryos with simultaneous down-regulated expression of cadherin-19 (Cdh19). Sox10 was found to bind directly to the Cdh19 promoter. Cdh19 knockdown resulted in retarded sacral NCC migration in vitro and ex vivo, whereas re-expression of Cdh19 partially rescued the retarded migration of mutant sacral NCCs in vitro. Cdh19 formed cadherin-catenin complexes, which then bound to filamentous actin of the cytoskeleton during cell migration. CONCLUSIONS: Cdh19 is a direct target of Sox10 during early sacral NCC migration toward the hindgut and forms cadherin-catenin complexes which interact with the cytoskeleton in migrating cells. Elucidation of this novel molecular pathway helps to provide insights into the pathogenesis of enteric nervous system developmental defects.


Assuntos
Caderinas/metabolismo , Movimento Celular , Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Fatores de Transcrição SOXE/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Animais , Caderinas/genética , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Cultura Embrionária , Sistema Nervoso Entérico/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/anormalidades , Células-Tronco Neurais/patologia , Ligação Proteica , Fatores de Transcrição SOXE/genética , Transdução de Sinais , Fatores de Tempo
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674448

RESUMO

High-fat/sucrose diet feeding in mice causes loss of corneal nerve function and impairs corneal wound healing. While changing to a diet with a low fat/sugar composition and enrichments in complex carbohydrates mitigates the reduction in nerve function, it remains to be determined if it has an effect on corneal wound healing. In this study, 6-week-old C57BL/6 male mice were fed either a normal diet or a high-fat/sucrose diet for 20 weeks. A third group (diet reversal) was placed on a high-fat/sucrose diet for 10 weeks followed by a normal diet for an additional 10 weeks. A central corneal epithelial abrasion wound was created, and wound closure was monitored. Neutrophil and platelet recruitment was assessed by immunofluorescence microscopy. Mice fed the high-fat/sucrose diet-only had greater adiposity (p < 0.005) than normal diet-only fed mice; diet reversal markedly reduced adiposity. Following corneal abrasion, wound closure was delayed by ~6 h (p ≤ 0.01) and, at 30 h post-wounding, fewer neutrophils reached the wound center and fewer extravascular platelets were present at the limbus (p < 0.05). Diet restored normal wound closure and neutrophil and platelet influx in the injured cornea. These data suggest compositional changes to the diet may be an effective diet-based therapeutic strategy for maintaining or restoring corneal health.


Assuntos
Lesões da Córnea , Sacarose , Masculino , Animais , Camundongos , Sacarose/farmacologia , Camundongos Endogâmicos C57BL , Córnea , Lesões da Córnea/etiologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos
4.
J Biol Chem ; 296: 100268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33837726

RESUMO

Degranulation, a fundamental effector response from mast cells (MCs) and platelets, is an example of regulated exocytosis. This process is mediated by SNARE proteins and their regulators. We have previously shown that several of these proteins are essential for exocytosis in MCs and platelets. Here, we assessed the role of the SNARE protein SNAP23 using conditional knockout mice, in which SNAP23 was selectively deleted from either the megakaryocyte/platelet or connective tissue MC lineages. We found that removal of SNAP23 in platelets results in severe defects in degranulation of all three platelet secretory granule types, i.e., alpha, dense, and lysosomal granules. The mutation also induces thrombocytopenia, abnormal platelet morphology and activation, and reduction in the number of alpha granules. Therefore, the degranulation defect might not be secondary to an intrinsic failure of the machinery mediating regulated exocytosis in platelets. When we removed SNAP23 expression in MCs, there was a complete developmental failure in vitro and in vivo. The developmental defects in platelets and MCs and the abnormal translocation of membrane proteins to the surface of platelets indicate that SNAP23 is also involved in constitutive exocytosis in these cells. The MC conditional deletant animals lacked connective tissue MCs, but their mucosal MCs were normal and expanded in response to an antigenic stimulus. We used this mouse to show that connective tissue MCs are required and mucosal MCs are not sufficient for an anaphylactic response.


Assuntos
Anafilaxia/imunologia , Plaquetas/imunologia , Tecido Conjuntivo/imunologia , Mastócitos/imunologia , Proteínas Qb-SNARE/imunologia , Proteínas Qc-SNARE/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , Plaquetas/patologia , Tecido Conjuntivo/patologia , Exocitose/genética , Exocitose/imunologia , Mastócitos/patologia , Camundongos , Camundongos Knockout , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Vesículas Secretórias/genética , Vesículas Secretórias/imunologia
5.
Pediatr Surg Int ; 38(5): 665-677, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35316841

RESUMO

PURPOSE: Enterocystoplasty is adopted for patients requiring bladder augmentation, but significant long-term complications highlight need for alternatives. We established a protocol for creating a natural-derived bladder extracellular matrix (BEM) for developing tissue-engineered bladder, and investigated its structural and functional characteristics. METHODS: Porcine bladders were de-cellularised with a dynamic detergent-enzymatic treatment using peristaltic infusion. Samples and fresh controls were evaluated using histological staining, ultrastructure (electron microscopy), collagen, glycosaminoglycans and DNA quantification and biomechanical testing. Compliance and angiogenic properties (Chicken chorioallantoic membrane [CAM] assay) were evaluated. T test compared stiffness and glycosaminoglycans, collagen and DNA quantity. p value of < 0.05 was regarded as significant. RESULTS: Histological evaluation demonstrated absence of cells with preservation of tissue matrix architecture (collagen and elastin). DNA was 0.01 µg/mg, significantly reduced compared to fresh tissue 0.13 µg/mg (p < 0.01). BEM had increased tensile strength (0.259 ± 0.022 vs 0.116 ± 0.006, respectively, p < 0.0001) and stiffness (0.00075 ± 0.00016 vs 0.00726 ± 0.00216, p = 0.011). CAM assay showed significantly increased number of convergent allantoic vessels after 6 days compared to day 1 (p < 0.01). Urodynamic studies showed that BEM maintains or increases capacity and compliance. CONCLUSION: Dynamic detergent-enzymatic treatment produces a BEM which retains structural characteristics, increases strength and stiffness and is more compliant than native tissue. Furthermore, BEM shows angiogenic potential. These data suggest the use of BEM for development of tissue-engineered bladder for patients requiring bladder augmentation.


Assuntos
Engenharia Tecidual , Bexiga Urinária , Animais , Colágeno , Matriz Extracelular , Humanos , Suínos , Engenharia Tecidual/métodos , Bexiga Urinária/cirurgia , Procedimentos Cirúrgicos Urológicos
6.
EMBO J ; 36(20): 3029-3045, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28899900

RESUMO

Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss-of-function disorders such as Hirschsprung disease.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Epiteliais/fisiologia , Mucosa Intestinal/fisiologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Drosophila , Regulação da Expressão Gênica , Humanos , Camundongos , Via de Sinalização Wnt
7.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298979

RESUMO

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the ß2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


Assuntos
Plaquetas/fisiologia , Antígenos CD18/fisiologia , Degranulação Celular , Córnea/irrigação sanguínea , Eritrócitos/fisiologia , Hiperemia/fisiopatologia , Mastócitos/fisiologia , Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Vasculite/imunologia , Vênulas/metabolismo , Animais , Antígenos CD18/deficiência , Movimento Celular , Quimiotaxia de Leucócito , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Epitélio Corneano/fisiologia , Feminino , Hiperemia/sangue , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Microscopia Eletrônica , Modelos Animais , Fagocitose , Regeneração/fisiologia , Vasculite/sangue , Vênulas/patologia , Cicatrização/fisiologia
8.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830235

RESUMO

Patients with Hirschsprung disease (HSCR) do not always receive a genetic diagnosis after routine screening in clinical practice. One of the reasons for this could be that the causal mutation is not present in the cell types that are usually tested-whole blood, dermal fibroblasts or saliva-but is only in the affected tissue. Such mutations are called somatic, and can occur in a given cell at any stage of development after conception. They will then be present in all subsequent daughter cells. Here, we investigated the presence of somatic mutations in HSCR patients. For this, whole-exome sequencing and copy number analysis were performed in DNA isolated from purified enteric neural crest cells (ENCCs) and blood or fibroblasts of the same patient. Variants identified were subsequently validated by Sanger sequencing. Several somatic variants were identified in all patients, but causative mutations for HSCR were not specifically identified in the ENCCs of these patients. Larger copy number variants were also not found to be specific to ENCCs. Therefore, we believe that somatic mutations are unlikely to be identified, if causative for HSCR. Here, we postulate various modes of development following the occurrence of a somatic mutation, to describe the challenges in detecting such mutations, and hypothesize how somatic mutations may contribute to 'missing heritability' in developmental defects.


Assuntos
Variações do Número de Cópias de DNA , Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/genética , Mutação , Crista Neural/metabolismo , Criança , Pré-Escolar , Sistema Nervoso Entérico/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Crista Neural/patologia , Análise de Sequência de DNA
9.
J Biol Chem ; 294(13): 4784-4792, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696774

RESUMO

Platelet degranulation, a form of regulated exocytosis, is crucial for hemostasis and thrombosis. Exocytosis in platelets is mediated by SNARE proteins, and in most mammalian cells this process is controlled by Munc18 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 18) proteins. Platelets express all Munc18 paralogs (Munc18-1, -2, and -3), but their roles in platelet secretion and function have not been fully characterized. Using Munc18-1, -2, and -3 conditional knockout mice, here we deleted expression of these proteins in platelets and assessed granule exocytosis. We measured products secreted by each type of platelet granule and analyzed EM platelet profiles by design-based stereology. We observed that the removal of Munc18-2 ablates the release of alpha, dense, and lysosomal granules from platelets, but we found no exocytic role for Munc18-1 or -3 in platelets. In vitro, Munc18-2-deficient platelets exhibited defective aggregation at low doses of collagen and impaired thrombus formation under shear stress. In vivo, megakaryocyte-specific Munc18-2 conditional knockout mice had a severe hemostatic defect and prolonged arterial and venous bleeding times. They were also protected against arterial thrombosis in a chemically induced model of arterial injury. Taken together, our results indicate that Munc18-2, but not Munc18-1 or Munc18-3, is essential for regulated exocytosis in platelets and platelet participation in thrombosis and hemostasis.


Assuntos
Plaquetas/metabolismo , Exocitose , Hemostasia , Proteínas Munc18/metabolismo , Vesículas Secretórias/metabolismo , Trombose/metabolismo , Animais , Plaquetas/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Proteínas Munc18/genética , Vesículas Secretórias/genética , Vesículas Secretórias/patologia , Trombose/genética , Trombose/patologia
10.
J Biol Chem ; 294(9): 3012-3023, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563839

RESUMO

Mast cells (MCs) participate in allergy, inflammation, and defense against pathogens. They release multiple immune mediators via exocytosis, a process that requires SNARE proteins, including syntaxins (Stxs). The identity of the Stxs involved in MC exocytosis remains controversial. Here, we studied the roles of Stx3 and -4 in fully developed MCs from conditional knockout mice by electrophysiology and EM, and found that Stx3, and not Stx4, is crucial for MC exocytosis. The main defect seen in Stx3-deficient MCs was their inability to engage multigranular compound exocytosis, while leaving most single-vesicle fusion events intact. We used this defect to show that this form of exocytosis is not only required to accelerate MC degranulation but also essential to achieve full degranulation. The exocytic defect was severe but not absolute, indicating that an Stx other than Stx3 and -4 is also required for exocytosis in MCs. The removal of Stx3 affected only regulated exocytosis, leaving other MC effector responses intact, including the secretion of cytokines via constitutive exocytosis. Our in vivo model of passive systemic anaphylaxis showed that the residual exocytic function of Stx3-deficient MCs was sufficient to drive a full anaphylactic response in mice.


Assuntos
Exocitose , Mastócitos/citologia , Proteínas Qa-SNARE/metabolismo , Animais , Contagem de Células , Degranulação Celular , Diferenciação Celular , Técnicas de Inativação de Genes , Cinética , Camundongos , Proteínas Qa-SNARE/deficiência , Proteínas Qa-SNARE/genética
11.
Am J Hum Genet ; 101(1): 123-129, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602422

RESUMO

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital disorder characterized by loss of smooth muscle contraction in the bladder and intestine. To date, three genes are known to be involved in MMIHS pathogenesis: ACTG2, MYH11, and LMOD1. However, for approximately 10% of affected individuals, the genetic cause of the disease is unknown, suggesting that other loci are most likely involved. Here, we report on three MMIHS-affected subjects from two consanguineous families with no variants in the known MMIHS-associated genes. By performing homozygosity mapping and whole-exome sequencing, we found homozygous variants in myosin light chain kinase (MYLK) in both families. We identified a 7 bp duplication (c.3838_3844dupGAAAGCG [p.Glu1282_Glyfs∗51]) in one family and a putative splice-site variant (c.3985+5C>A) in the other. Expression studies and splicing assays indicated that both variants affect normal MYLK expression. Because MYLK encodes an important kinase required for myosin activation and subsequent interaction with actin filaments, it is likely that in its absence, contraction of smooth muscle cells is impaired. The existence of a conditional-Mylk-knockout mouse model with severe gut dysmotility and abnormal function of the bladder supports the involvement of this gene in MMIHS pathogenesis. In aggregate, our findings implicate MYLK as a gene involved in the recessive form of MMIHS, confirming that this disease of the visceral organs is heterogeneous with a myopathic origin.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/genética , Colo/anormalidades , Genes Recessivos , Pseudo-Obstrução Intestinal/enzimologia , Pseudo-Obstrução Intestinal/genética , Mutação/genética , Quinase de Cadeia Leve de Miosina/genética , Bexiga Urinária/anormalidades , Sequência de Bases , Colo/enzimologia , Feminino , Homozigoto , Humanos , Masculino , Linhagem , Bexiga Urinária/enzimologia
12.
Gastroenterology ; 156(5): 1483-1495.e6, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30610864

RESUMO

BACKGROUND & AIMS: The enteric nervous system (ENS) is the largest branch of the peripheral nervous system, comprising complex networks of neurons and glia, which are present throughout the gastrointestinal tract. Although development of a fully functional ENS is required for gastrointestinal motility, little is known about the ontogeny of ENS function in humans. We studied the development of neuronal subtypes and the emergence of evoked electrical activity in the developing human ENS. METHODS: Human fetal gut samples (obtained via the MRC-Wellcome Trust Human Developmental Biology Resource-UK) were characterized by immunohistochemistry, calcium imaging, RNA sequencing, and quantitative real-time polymerase chain reaction analyses. RESULTS: Human fetal colon samples have dense neuronal networks at the level of the myenteric plexus by embryonic week (EW) 12, with expression of excitatory neurotransmitter and synaptic markers. By contrast, markers of inhibitory neurotransmitters were not observed until EW14. Electrical train stimulation of internodal strands did not evoke activity in the ENS of EW12 or EW14 tissues. However, compound calcium activation was observed at EW16, which was blocked by the addition of 1 µmol/L tetrodotoxin. Expression analyses showed that this activity was coincident with increases in expression of genes encoding proteins involved in neurotransmission and action potential generation. CONCLUSIONS: In analyses of human fetal intestinal samples, we followed development of neuronal diversity, electrical excitability, and network formation in the ENS. These processes are required to establish the functional enteric circuitry. Further studies could increase our understanding of the pathogenesis of a range of congenital enteric neuropathies.


Assuntos
Colo/inervação , Sistema Nervoso Entérico/fisiologia , Potenciais Evocados , Rede Nervosa/fisiologia , Neurogênese , Neurônios/fisiologia , Sinalização do Cálcio , Colo/embriologia , Estimulação Elétrica , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/embriologia , Potenciais Evocados/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/embriologia , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Fenótipo , Gravidez , Segundo Trimestre da Gravidez , Transmissão Sináptica
13.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32444408

RESUMO

Current methods to replace damaged upper airway epithelium with exogenous cells are limited. Existing strategies use grafts that lack mucociliary function, leading to infection and the retention of secretions and keratin debris. Strategies that regenerate airway epithelium with mucociliary function are clearly desirable and would enable new treatments for complex airway disease.Here, we investigated the influence of the extracellular matrix (ECM) on airway epithelial cell adherence, proliferation and mucociliary function in the context of bioengineered mucosal grafts. In vitro, primary human bronchial epithelial cells (HBECs) adhered most readily to collagen IV. Biological, biomimetic and synthetic scaffolds were compared in terms of their ECM protein content and airway epithelial cell adherence.Collagen IV and laminin were preserved on the surface of decellularised dermis and epithelial cell attachment to decellularised dermis was greater than to the biomimetic or synthetic alternatives tested. Blocking epithelial integrin α2 led to decreased adherence to collagen IV and to decellularised dermis scaffolds. At air-liquid interface (ALI), bronchial epithelial cells cultured on decellularised dermis scaffolds formed a differentiated respiratory epithelium with mucociliary function. Using in vivo chick chorioallantoic membrane (CAM), rabbit airway and immunocompromised mouse models, we showed short-term preservation of the cell layer following transplantation.Our results demonstrate the feasibility of generating HBEC grafts on clinically applicable decellularised dermis scaffolds and identify matrix proteins and integrins important for this process. The long-term survivability of pre-differentiated epithelia and the relative merits of this approach against transplanting basal cells should be assessed further in pre-clinical airway transplantation models.


Assuntos
Colágeno , Matriz Extracelular , Laminina , Mucosa Respiratória , Alicerces Teciduais , Animais , Brônquios , Células Cultivadas , Células Epiteliais , Humanos , Coelhos
14.
J Neurosci Res ; 98(2): 312-324, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630455

RESUMO

Recent advances in three-dimensional (3D) fluorescence microscopy offer the ability to image the entire vascular network in entire organs, or even whole animals. However, these imaging modalities rely on either endogenous fluorescent reporters or involved immunohistochemistry protocols, as well as optical clearing of the tissue and refractive index matching. Conversely, X-ray-based 3D imaging modalities, such as micro CT, can image non-transparent samples, at high resolution, without requiring complicated or expensive immunolabeling and clearing protocols, or fluorescent reporters. Here, we compared two "homemade" barium-based contrast agents to the field standard, lead-containing Microfil, for micro-computed tomography (micro CT) imaging of the adult mouse cerebrovasculature. The perfusion pressure required for uniform vessel filling was significantly lower with the barium-based contrast agents compared to the polymer-based Microfil. Accordingly, the barium agents showed no evidence of vascular distension or rupture, common problems associated with Microfil. Compellingly, perfusion of an aqueous BaCl2 /gelatin mixture yielded equal or superior visualization of the cerebrovasculature by micro CT compared to Microfil. However, phosphate-containing buffers and fixatives were incompatible with BaCl2 due to the formation of unwanted precipitates. X-ray attenuation of the vessels also decreased overtime, as the BaCl2 appeared to gradually diffuse into surrounding tissues. A second, unique formulation composed of BaSO4 microparticles, generated in-house by mixing BaCl2 and MgSO4 , suffered none of these drawbacks. These microparticles, however, were unable to pass small diameter capillary vessels, conveniently labeling only the arterial cerebrovasculature. In summary, we present an affordable, robust, low pressure, non-toxic, and straightforward methodology for 3D visualization of the cerebrovasculature.


Assuntos
Bário , Circulação Cerebrovascular/fisiologia , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Animais , Meios de Contraste , Camundongos
15.
Proc Natl Acad Sci U S A ; 114(45): 11980-11985, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078343

RESUMO

Most of the enteric nervous system derives from the "vagal" neural crest, lying at the level of somites 1-7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the "vagal crest" subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3-7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated.


Assuntos
Sistema Nervoso Entérico/citologia , Gânglios Simpáticos/citologia , Trato Gastrointestinal/embriologia , Crista Neural/citologia , Neuregulina-1/genética , Receptor ErbB-3/genética , Células de Schwann/citologia , Animais , Embrião de Galinha , Trato Gastrointestinal/inervação , Doença de Hirschsprung/genética , Camundongos , Neuregulina-1/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Receptor ErbB-3/metabolismo , Nervo Vago/citologia
16.
Proc Natl Acad Sci U S A ; 114(13): E2739-E2747, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292896

RESUMO

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling.


Assuntos
Anormalidades Múltiplas/genética , Autoantígenos/fisiologia , Colo/anormalidades , Proteínas do Citoesqueleto/fisiologia , Pseudo-Obstrução Intestinal/genética , Proteínas Musculares/fisiologia , Bexiga Urinária/anormalidades , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Códon sem Sentido , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Recém-Nascido , Camundongos , Contração Muscular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso/fisiologia
17.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233559

RESUMO

BACKGROUND: Dyslipidemia may be linked to meibomian gland dysfunction (MGD) and altered meibum lipid composition. The purpose was to determine if plasma and meibum cholesteryl esters (CE), triglycerides (TG), ceramides (Cer) and sphingomyelins (SM) change in a mouse model of diet-induced obesity where mice develop dyslipidemia. METHODS: Male C57/BL6 mice (8/group, age = 6 wks) were fed a normal (ND; 15% kcal fat) or an obesogenic high-fat diet (HFD; 42% kcal fat) for 10 wks. Tear production was measured and meibography was performed. Body and epididymal adipose tissue (eAT) weights were determined. Nano-ESI-MS/MS and LC-ESI-MS/MS were used to detect CE, TG, Cer and SM species. Data were analyzed by principal component analysis, Pearson's correlation and unpaired t-tests adjusted for multiple comparisons; significance set at p ≤ 0.05. RESULTS: Compared to ND mice, HFD mice gained more weight and showed heavier eAT and dyslipidemia with higher levels of plasma CE, TG, Cer and SM. HFD mice had hypertrophic meibomian glands, increased levels of lipid species acylated by saturated fatty acids in plasma and meibum and excessive tear production. CONCLUSIONS: The majority of meibum lipid species with saturated fatty acids increased with HFD feeding with evidence of meibomian gland hypertrophy and excessive tearing. The dyslipidemia is associated with altered meibum composition, a key feature of MGD.


Assuntos
Dislipidemias/metabolismo , Hipertrofia/metabolismo , Glândulas Tarsais/metabolismo , Obesidade/metabolismo , Lágrimas/química , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Ceramidas/classificação , Ceramidas/isolamento & purificação , Ceramidas/metabolismo , Ésteres do Colesterol/classificação , Ésteres do Colesterol/isolamento & purificação , Ésteres do Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/etiologia , Dislipidemias/patologia , Epididimo/química , Epididimo/metabolismo , Humanos , Hipertrofia/etiologia , Hipertrofia/patologia , Masculino , Glândulas Tarsais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Análise de Componente Principal , Esfingomielinas/classificação , Esfingomielinas/isolamento & purificação , Esfingomielinas/metabolismo , Lágrimas/metabolismo , Triglicerídeos/classificação , Triglicerídeos/isolamento & purificação , Triglicerídeos/metabolismo
18.
Dev Dyn ; 248(11): 1155-1174, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310039

RESUMO

BACKGROUND: Aquatic species in several clades possess cement glands producing adhesive secretions of various strengths. In vertebrates, transient adhesive organs have been extensively studied in Xenopus laevis, other anurans, and in several fish species. However, the development of these structures is not fully understood. RESULTS: Here, we report on the development and functional morphology of the adhesive gland of a giant danio species, Devario malabaricus. We found that the gland is localized on the larval head, is composed of goblet-like secretory cells framed by basal, bordering, and intercalated apical epithelial cells, and is innervated by the trigeminal ganglion. The gland allows nonswimming larvae to adhere to various substrates. Its secretory cells differentiate by 12 hours postfertilization and begin to disappear in the second week of life. Exogenous retinoic acid disrupts the gland's patterning. More importantly, the single mature gland emerges from fusion of two differentiated secretory cells fields; this fusion is dependent on nonmuscle myosin II function. CONCLUSIONS: Taken together, our studies provide the first documentation of the embryonic development, structure, and function of the adhesive apparatus of a danioninae. To our knowledge, this is also the first report of a cement gland arising from convergence of two bilateral fields.


Assuntos
Cyprinidae/embriologia , Embrião não Mamífero/embriologia , Glândulas Exócrinas/embriologia , Células Caliciformes/metabolismo , Organogênese/fisiologia , Animais , Embrião não Mamífero/citologia , Glândulas Exócrinas/citologia , Células Caliciformes/citologia , Organogênese/efeitos dos fármacos , Tretinoína/farmacologia
19.
J Biol Chem ; 293(19): 7148-7159, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29599294

RESUMO

Mast cells (MCs) play pivotal roles in many inflammatory conditions including infections, anaphylaxis, and asthma. MCs store immunoregulatory compounds in their large cytoplasmic granules and, upon stimulation, secrete them via regulated exocytosis. Exocytosis in many cells requires the participation of Munc18 proteins (also known as syntaxin-binding proteins), and we found that mature MCs express all three mammalian isoforms: Munc18-1, -2, and -3. To study their functions in MC effector responses and test the role of MC degranulation in anaphylaxis, we used conditional knockout (cKO) mice in which each Munc18 protein was deleted exclusively in MCs. Using recordings of plasma membrane capacitance for high-resolution analysis of exocytosis in individual MCs, we observed an almost complete absence of exocytosis in Munc18-2-deficient MCs but intact exocytosis in MCs lacking Munc18-1 or Munc18-3. Stereological analysis of EM images of stimulated MCs revealed that the deletion of Munc18-2 also abolishes the homotypic membrane fusion required for compound exocytosis. We confirmed the severe defect in regulated exocytosis in the absence of Munc18-2 by measuring the secretion of mediators stored in MC granules. Munc18-2 cKO mice had normal morphology, development, and distribution of their MCs, indicating that Munc18-2 is not essential for the migration, retention, and maturation of MC-committed progenitors. Despite that, we found that Munc18-2 cKO mice were significantly protected from anaphylaxis. In conclusion, MC-regulated exocytosis is required for the anaphylactic response, and Munc18-2 is the sole Munc18 isoform that mediates membrane fusion during MC degranulation.


Assuntos
Exocitose/fisiologia , Mastócitos/metabolismo , Proteínas Munc18/fisiologia , Anafilaxia/fisiopatologia , Animais , Degranulação Celular , Deleção de Genes , Mastócitos/ultraestrutura , Fusão de Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas Munc18/genética , Técnicas de Patch-Clamp
20.
J Biol Chem ; 293(1): 345-358, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29141910

RESUMO

Mast cells (MCs) are involved in host defenses against pathogens and inflammation. Stimulated MCs release substances stored in their granules via regulated exocytosis. In other cell types, Munc13 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 13) proteins play essential roles in regulated exocytosis. Here, we found that MCs express Munc13-2 and -4, and we studied their roles using global and conditional knock-out (KO) mice. In a model of systemic anaphylaxis, we found no difference between WT and Munc13-2 KO mice, but global and MC-specific Munc13-4 KO mice developed less hypothermia. This protection correlated with lower plasma histamine levels and with histological evidence of defective MC degranulation but not with changes in MC development, distribution, numbers, or morphology. In vitro assays revealed that the defective response in Munc13-4-deficient MCs was limited to regulated exocytosis, leaving other MC secretory effector responses intact. Single cell capacitance measurements in MCs from mouse mutants differing in Munc13-4 expression levels in their MCs revealed that as levels of Munc13-4 decrease, the rate of exocytosis declines first, and then the total amount of exocytosis decreases. A requirement for Munc13-2 in MC exocytosis was revealed only in the absence of Munc13-4. Electrophysiology and EM studies uncovered that the number of multigranular compound events (i.e. granule-to-granule homotypic fusion) was severely reduced in the absence of Munc13-4. We conclude that although Munc13-2 plays a minor role, Munc13-4 is essential for regulated exocytosis in MCs, and that this MC effector response is required for a full anaphylactic response.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Anafilaxia , Animais , Modelos Animais de Doenças , Exocitose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mastócitos/metabolismo , Mastócitos/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Isoformas de Proteínas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA