Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
EMBO J ; 41(1): e108813, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34817085

RESUMO

Heterochromatin is a conserved feature of eukaryotic chromosomes, with central roles in gene expression regulation and maintenance of genome stability. How heterochromatin proteins regulate DNA repair remains poorly described. In the yeast Saccharomyces cerevisiae, the silent information regulator (SIR) complex assembles heterochromatin-like chromatin at sub-telomeric chromosomal regions. SIR-mediated repressive chromatin limits DNA double-strand break (DSB) resection, thus protecting damaged chromosome ends during homologous recombination (HR). As resection initiation represents the crossroads between repair by non-homologous end joining (NHEJ) or HR, we asked whether SIR-mediated heterochromatin regulates NHEJ. We show that SIRs promote NHEJ through two pathways, one depending on repressive chromatin assembly, and the other relying on Sir3 in a manner that is independent of its heterochromatin-promoting function. Via physical interaction with the Sae2 protein, Sir3 impairs Sae2-dependent functions of the MRX (Mre11-Rad50-Xrs2) complex, thereby limiting Mre11-mediated resection, delaying MRX removal from DSB ends, and promoting NHEJ.


Assuntos
Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Endonucleases/química , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/metabolismo
2.
Nucleic Acids Res ; 51(22): 12367-12380, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933840

RESUMO

Transcription factors contain a DNA-binding domain ensuring specific recognition of DNA target sequences. The family of forkhead (FOX) transcription factors is composed of dozens of paralogs in mammals. The forkhead domain (FHD) is a segment of about 100 amino acids that binds an A-rich DNA sequence. Using DNA and RNA PCR-SELEX, we show that recombinant FOXL2 proteins, either wild-type or carrying the oncogenic variant C134W, recognize similar DNA-binding sites. This suggests that the oncogenic variant does not alter the intrinsic sequence-specificity of FOXL2. Most importantly, we show that FOXL2 binds G2-rich RNA sequences whereas it virtually fails to bind similar sequences in DNA chemistry. Interestingly, a statistically significant subset of genes responding to the knock-down of FOXL2/Foxl2 harbor such G2-rich sequences and are involved in crucial signaling pathways and cellular processes. In addition, we show that FOXA1, FOXO3a and chimeric FOXL2 proteins containing the FHD of the former are also able to interact with some of the preferred FOXL2-binding sequences. Our results point to an unexpected and novel characteristic of the forkhead domain, the biological relevance of which remains to be explored.


Assuntos
DNA , Fatores de Transcrição Forkhead , Animais , Fatores de Transcrição Forkhead/metabolismo , Sequência de Bases , Domínios Proteicos , Sítios de Ligação/genética , DNA/genética , Mamíferos/genética
3.
Nucleic Acids Res ; 51(10): 4942-4958, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021552

RESUMO

The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.


Assuntos
DNA Glicosilases , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/química , DNA Glicosilases/metabolismo , Reparo do DNA
4.
J Med Genet ; 60(11): 1116-1126, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37308287

RESUMO

BACKGROUND: Mirror movements are involuntary movements of one hand that mirror intentional movements of the other hand. Congenital mirror movements (CMM) is a rare genetic disorder with autosomal dominant inheritance, in which mirror movements are the main neurological manifestation. CMM is associated with an abnormal decussation of the corticospinal tract, a major motor tract for voluntary movements. RAD51 is known to play a key role in homologous recombination with a critical function in DNA repair. While RAD51 haploinsufficiency was first proposed to explain CMM, other mechanisms could be involved. METHODS: We performed Sanger sequencing of RAD51 in five newly identified CMM families to identify new pathogenic variants. We further investigated the expression of wild-type and mutant RAD51 in the patients' lymphoblasts at mRNA and protein levels. We then characterised the functions of RAD51 altered by non-truncating variants using biochemical approaches. RESULTS: The level of wild-type RAD51 protein was lower in the cells of all patients with CMM compared with their non-carrier relatives. The reduction was less pronounced in asymptomatic carriers. In vitro, mutant RAD51 proteins showed loss-of-function for polymerisation, DNA binding and strand exchange activity. CONCLUSION: Our study demonstrates that RAD51 haploinsufficiency, including loss-of-function of non-truncating variants, results in CMM. The incomplete penetrance likely results from post-transcriptional compensation. Changes in RAD51 levels and/or polymerisation properties could influence guidance of the corticospinal axons during development. Our findings open up new perspectives to understand the role of RAD51 in neurodevelopment.

5.
Nucleic Acids Res ; 49(17): 9886-9905, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34469544

RESUMO

Telomere maintenance is essential to preserve genomic stability and involves telomere-specific proteins, DNA replication and repair proteins. Lamins are key components of the nuclear envelope and play numerous roles, including maintenance of the nuclear integrity, regulation of transcription, and DNA replication. Elevated levels of lamin B1, one of the major lamins, have been observed in some human pathologies and several cancers. Yet, the effect of lamin B1 dysregulation on telomere maintenance remains unknown. Here, we unveil that lamin B1 overexpression drives telomere instability through the disruption of the shelterin complex. Indeed, lamin B1 dysregulation leads to an increase in telomere dysfunction-induced foci, telomeric fusions and telomere losses in human cells. Telomere aberrations were preceded by mislocalizations of TRF2 and its binding partner RAP1. Interestingly, we identified new interactions between lamin B1 and these shelterin proteins, which are strongly enhanced at the nuclear periphery upon lamin B1 overexpression. Importantly, chromosomal fusions induced by lamin B1 in excess were rescued by TRF2 overexpression. These data indicated that lamin B1 overexpression triggers telomere instability through a mislocalization of TRF2. Altogether our results point to lamin B1 as a new interacting partner of TRF2, that is involved in telomere stability.


Assuntos
Lamina Tipo B/metabolismo , Complexo Shelterina/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Células Cultivadas , Humanos , Lamina Tipo B/química , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química
6.
PLoS Genet ; 16(11): e1009090, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33147208

RESUMO

Interferon ß (IFN-ß) is a cytokine that induces a global antiviral proteome, and regulates the adaptive immune response to infections and tumors. Its effects strongly depend on its level and timing of expression. Therefore, the transcription of its coding gene IFNB1 is strictly controlled. We have previously shown that in mice, the TRIM33 protein restrains Ifnb1 transcription in activated myeloid cells through an upstream inhibitory sequence called ICE. Here, we show that the deregulation of Ifnb1 expression observed in murine Trim33-/- macrophages correlates with abnormal looping of both ICE and the Ifnb1 gene to a 100 kb downstream region overlapping the Ptplad2/Hacd4 gene. This region is a predicted myeloid super-enhancer in which we could characterize 3 myeloid-specific active enhancers, one of which (E5) increases the response of the Ifnb1 promoter to activation. In humans, the orthologous region contains several single nucleotide polymorphisms (SNPs) known to be associated with decreased expression of IFNB1 in activated monocytes, and loops to the IFNB1 gene. The strongest association is found for the rs12553564 SNP, located in the E5 orthologous region. The minor allele of rs12553564 disrupts a conserved C/EBP-ß binding motif, prevents binding of C/EBP-ß, and abolishes the activation-induced enhancer activity of E5. Altogether, these results establish a link between a genetic variant preventing binding of a transcription factor and a higher order phenotype, and suggest that the frequent minor allele (around 30% worldwide) might be associated with phenotypes regulated by IFN-ß expression in myeloid cells.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/imunologia , Interferon beta/genética , Células Mieloides/metabolismo , Alelos , Animais , Buffy Coat/citologia , Células Cultivadas , Humanos , Interferon beta/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nucleic Acids Res ; 48(16): 9082-9097, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32710616

RESUMO

One of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1. We show that cohesin and mediator subunits are required for re-localization of OGG1 and other base excision repair factors to chromatin upon oxidative stress. The association of OGG1 with euchromatin is necessary for the removal of 8-oxoG. Mediator subunits CDK8 and MED12 bind to chromatin and interact with OGG1 in response to oxidative stress, suggesting they participate in the recruitment of the DNA glycosylase. The oxidative stress-induced association between the cohesin and mediator complexes and OGG1 reveals an unsuspected function of those complexes in the maintenance of genomic stability.


Assuntos
Cromatina/genética , DNA Glicosilases/genética , Reparo do DNA/genética , Guanina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Eucromatina/genética , Instabilidade Genômica/genética , Guanina/metabolismo , Células HeLa , Humanos , Estresse Oxidativo/genética , RNA Interferente Pequeno/genética , Transfecção , Coesinas
8.
Anal Biochem ; 512: 110-113, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558914

RESUMO

We report the construction of a versatile Gateway-based co-expression vector set for producing multiprotein complexes in Escherichia coli. The set consists of two groups of three vectors (pCoGW and pCo0GW), each having a specific antibiotic resistance gene, a compatible origin of replication and allowing cloning of up to two genes, each under control of its own T7 promoter. To validate the set, 33 (co-)expression plasmids encoding fluorescent protein (GFP, DsRed and ECFP) have been generated. Protein expression levels were quantified and (co-)expression visualized by fluorescent microscopy. The results illustrate the applicability of these vectors in co-expression studies.


Assuntos
Escherichia coli , Expressão Gênica , Biblioteca Gênica , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Complexos Multiproteicos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/genética
9.
DNA Repair (Amst) ; 133: 103610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101146

RESUMO

DNA is the major target of radiation therapy of malignant tumors. Ionizing radiation (IR) induces a variety of DNA lesions, including chemically modified bases and strand breaks. The use of proton beam therapy for cancer treatment is ramping up, as it is expected to reduce normal tissue damage. Thus, it is important to understand the molecular mechanisms of recognition, signaling, and repair of DNA damage induced by protons in the perspective of assessing not only the risk associated with human exposure to IR but also the possibility to improve the efficacy of therapy. Here, we used targeted irradiation of nuclear regions of living cells with controlled number of protons at a high spatio-temporal resolution to detect the induced base lesions and characterize the recruitment kinetics of the specific DNA glycosylases to DNA damage sites. We show that localized irradiation with 4 MeV protons induces, in addition to DNA double strand breaks (DSBs), the oxidized bases 7,8-dihydro-8-oxoguanine (8-oxoG) and thymine glycol (TG) at the site of irradiation. Consistently, the DNA glycosylases OGG1 and NTH1, capable of excising 8-oxoG and TG, respectively, and initiating the base excision repair (BER) pathway, are recruited to the site of damage. To our knowledge, this is the first direct evidence indicating that proton microbeams induce oxidative base damage, and thus implicating BER in the repair of DNA lesions induced by protons.


Assuntos
DNA Glicosilases , Humanos , DNA Glicosilases/metabolismo , Prótons , Reparo do DNA , Estresse Oxidativo , Dano ao DNA , DNA/metabolismo
10.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081641

RESUMO

Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.


Assuntos
Rad51 Recombinase , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Rad51 Recombinase/genética , DNA de Cadeia Simples/genética , Reparo do DNA/genética , Recombinação Homóloga/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
11.
Hum Mol Genet ; 20(14): 2795-806, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21518730

RESUMO

Huntington's disease (HD) is caused by the expansion mutation above a length threshold of a polyglutamine (polyQ) stretch in the huntingtin (Htt) protein. Mutant Htt (mHtt) pathogenicity is proposed to rely on its malfunction and propensity to misfold and aggregate. Htt has scaffolding properties and has been reported to interact with hundreds of partners. Many interactors show apparent increased or decreased affinity (dysinteraction) for mHtt, which may account for selective malfunctions and striatal degeneration in HD. These dysinteractions are proposed to result from mutant polyQ conformational changes that remain elusive. To date, dysinteractions have only been studied using semi-quantitative techniques with their outcome potentially influenced by the presence of mHtt aggregates. Therefore, the molecular mechanism underlying these dysinteractions remains to be determined. Here, we have used purified proteins devoid of aggregates to quantify the interaction of normal and mHtt with two partners: SH3GL3, reported to have increased binding to mHtt, and the 2B4 antibody, a model partner. Using surface plasmon resonance and pull-down techniques, we show that in the absence of aggregation polyQ length has no effect on Htt interactions. We demonstrate that the presence of aggregates affects the spatial distribution and solubility of Htt partners and strongly influences the outcome of pull-down experiments. Our results show that expanded polyQ per se does not alter Htt interactions and suggest that aggregated mHtt form molecular platforms that influence the Htt interacting network. Modulating mHtt aggregation could thus have beneficial effects on specific cellular pathways deregulated in HD.


Assuntos
Doença de Huntington/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anticorpos Monoclonais Murinos/química , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Cell Rep ; 42(11): 113412, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963016

RESUMO

RNA-binding proteins (RBPs) are found at replication forks, but their direct interaction with DNA-embedded RNA species remains unexplored. Here, we report that p53-binding protein 1 (53BP1), involved in the DNA damage and replication stress response, is an RBP that directly interacts with Okazaki fragments in the absence of external stress. The recruitment of 53BP1 to nascent DNA shows susceptibility to in situ ribonuclease A treatment and is dependent on PRIM1, which synthesizes the RNA primer of Okazaki fragments. Conversely, depletion of FEN1, resulting in the accumulation of uncleaved RNA primers, increases 53BP1 levels at replication forks, suggesting that RNA primers contribute to the recruitment of 53BP1 at the lagging DNA strand. 53BP1 depletion induces an accumulation of S-phase poly(ADP-ribose), which constitutes a sensor of unligated Okazaki fragments. Collectively, our data indicate that 53BP1 is anchored at nascent DNA through its RNA-binding activity, highlighting the role of an RNA-protein interaction at replication forks.


Assuntos
Replicação do DNA , DNA , Replicação do DNA/genética , DNA/metabolismo , RNA/genética , RNA/metabolismo
13.
iScience ; 25(12): 105482, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404925

RESUMO

Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions. Here, we show that the expression of the endothelial α-mannosidase MAN1C1 protein decreases after irradiation. We modeled two crucial steps in monocyte recruitment by developing in vitro real-time imaging models. Inhibition of MAN1C1 expression by siRNA gene silencing increases the abundance of high-mannose N-glycans, improves the adhesion of monocytes on endothelial cells in flow conditions and, in contrast, decreases radiation-induced transendothelial migration of monocytes. Consistently, overexpression of MAN1C1 in endothelial cells using lentiviral vectors decreases the abundance of high-mannose N-glycans and monocyte adhesion and enhances transendothelial migration of monocytes. Hence, we propose a role for endothelial MAN1C1 in the recruitment of monocytes, particularly in the adhesion step to the endothelium.

14.
J Struct Biol ; 175(2): 198-208, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21419851

RESUMO

Multiprotein complexes catalyze vital biological functions in the cell. A paramount objective of the SPINE2 project was to address the structural molecular biology of these multiprotein complexes, by enlisting and developing enabling technologies for their study. An emerging key prerequisite for studying complex biological specimens is their recombinant overproduction. Novel reagents and streamlined protocols for rapidly assembling co-expression constructs for this purpose have been designed and validated. The high-throughput pipeline implemented at IGBMC Strasbourg and the ACEMBL platform at the EMBL Grenoble utilize recombinant overexpression systems for heterologous expression of proteins and their complexes. Extension of the ACEMBL platform technology to include eukaryotic hosts such as insect and mammalian cells has been achieved. Efficient production of large multicomponent protein complexes for structural studies using the baculovirus/insect cell system can be hampered by a stoichiometric imbalance of the subunits produced. A polyprotein strategy has been developed to overcome this bottleneck and has been successfully implemented in our MultiBac baculovirus expression system for producing multiprotein complexes.


Assuntos
Automação Laboratorial/instrumentação , Clonagem Molecular/métodos , Complexos Multiproteicos/biossíntese , Proteínas Recombinantes/biossíntese , Academias e Institutos , Animais , Baculoviridae , Células Cultivadas , Escherichia coli , Europa (Continente) , Proteínas de Fluorescência Verde/biossíntese , Humanos , Proteínas Luminescentes/biossíntese , Poliproteínas/biossíntese , Poliproteínas/genética , Engenharia de Proteínas , Spodoptera
15.
J Struct Biol ; 175(2): 159-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21382497

RESUMO

Escherichia coli (E. coli) remains the most commonly used host for recombinant protein expression. It is well known that a variety of experimental factors influence the protein production level as well as the solubility profile of over-expressed proteins. This becomes increasingly important for optimizing production of protein complexes using co-expression strategies. In this study, we focus on the effect of the choice of the expression vector system: by standardizing experimental factors including bacterial strain, cultivation temperature and growth medium composition, we compare the effectiveness of expression technologies used by the partners of the Structural Proteomics in Europe 2 (SPINE2-complexes) consortium. Four different protein complexes, including three binary and one ternary complex, all known to be produced in the soluble form in E. coli, are used as the benchmark targets. The respective genes were cloned by each partner into their preferred set of vectors. The resulting constructs were then used for comparative co-expression analysis done in parallel and under identical conditions at a single site. Our data show that multiple strategies can be applied for the expression of protein complexes in high yield. While there is no 'silver bullet' approach that was infallible even for this small test set, our observations are useful as a guideline to delineate co-expression strategies for particular protein complexes.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos/normas , Complexos Multiproteicos/biossíntese , Proteínas Recombinantes/biossíntese , Academias e Institutos , Fator de Ligação a CCAAT/biossíntese , Fator de Ligação a CCAAT/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Europa (Continente) , Geminina , Cooperação Internacional , Israel , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fatores de Transcrição TFII/biossíntese , Fatores de Transcrição TFII/genética
16.
DNA Repair (Amst) ; 102: 103097, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812231

RESUMO

During meiosis, programmed double-strand breaks are repaired by homologous recombination (HR) to form crossovers that are essential to homologous chromosome segregation. Single-stranded DNA (ssDNA) containing intermediates are key features of HR, which must be highly regulated. RPA, the ubiquitous ssDNA binding complex, was thought to play similar roles during mitotic and meiotic HR until the recent discovery of MEIOB and its partner, SPATA22, two essential meiosis-specific proteins. Here, we show that like MEIOB, SPATA22 resembles RPA subunits and binds ssDNA. We studied the physical and functional interactions existing between MEIOB, SPATA22, and RPA, and show that MEIOB and SPATA22 interact with the preformed RPA complex through their interacting domain and condense RPA-coated ssDNA in vitro. In meiotic cells, we show that MEIOB and SPATA22 modify the immunodetection of the two large subunits of RPA. Given these results, we propose that MEIOB-SPATA22 and RPA form a functional ssDNA-interacting complex to satisfy meiotic HR requirements by providing specific properties to the ssDNA.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Troca Genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína de Replicação A/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Recombinação Homóloga , Humanos , Meiose , Camundongos , Modelos Moleculares , Complexos Multiproteicos , Conformação Proteica
17.
Oncogene ; 40(19): 3460-3469, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767435

RESUMO

In solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter. Importantly, we show that this ATM-TAK1-PrPC pathway mediated radioresistance is activated in all tumor cell lines studied and that pharmacological inhibition of TAK1 activity recapitulates the effects of PrPC deficiency. Altogether, these results unveil how tumor cells activate PRNP to acquire resistance to radiotherapy and might have implications for therapeutic targeting of solid tumors radioresistance.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias/metabolismo , Neoplasias/radioterapia , Proteínas PrPC/biossíntese , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Proteínas PrPC/metabolismo , Tolerância a Radiação
18.
Nat Commun ; 12(1): 2763, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980827

RESUMO

Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Motivos de Aminoácidos , Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/química , Exodesoxirribonucleases/química , Modelos Moleculares , Complexos Multiproteicos , Mutação , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética
19.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34452908

RESUMO

Double-strand breaks (DSBs) are harmful lesions and a major cause of genome instability. Studies have suggested a link between the nuclear envelope and the DNA damage response. Here, we show that lamin B1, a major component of the nuclear envelope, interacts directly with 53BP1 protein, which plays a pivotal role in the DSB repair. This interaction is dissociated after DNA damage. Lamin B1 overexpression impedes 53BP1 recruitment to DNA damage sites and leads to a persistence of DNA damage, a defect in nonhomologous end joining and an increased sensitivity to DSBs. The identification of interactions domains between lamin B1 and 53BP1 allows us to demonstrate that the defect of 53BP1 recruitment and the DSB persistence upon lamin B1 overexpression are due to sequestration of 53BP1 by lamin B1. This study highlights lamin B1 as a factor controlling the recruitment of 53BP1 to DNA damage sites upon injury.


Assuntos
Quebras de DNA de Cadeia Dupla , Lamina Tipo B , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
20.
BMC Genomics ; 11: 634, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21080938

RESUMO

BACKGROUND: Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. RESULTS: We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. CONCLUSIONS: Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates.


Assuntos
DNA Complementar/genética , Evolução Molecular , Filogenia , Poliquetos/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Aminoácidos/genética , Animais , Composição de Bases/genética , Teorema de Bayes , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Biblioteca Gênica , Internet , Metais Pesados/toxicidade , Anotação de Sequência Molecular , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Poliquetos/efeitos dos fármacos , Estrutura Terciária de Proteína , Ribossomos/genética , Temperatura , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA