Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328625

RESUMO

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.


Assuntos
Neoplasias Ósseas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Organoides/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Androgênios/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Benzamidas/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transplante Heterólogo , Internalização do Vírus
2.
Mol Cell ; 39(6): 873-85, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20864035

RESUMO

During an immune response, B cells undergo rapid proliferation and activation-induced cytidine deaminase (AID)-dependent remodeling of immunoglobulin (IG) genes within germinal centers (GCs) to generate memory B and plasma cells. Unfortunately, the genotoxic stress associated with the GC reaction also promotes most B cell malignancies. Here, we report that exogenous and intrinsic AID-induced DNA strand breaks activate ATM, which signals through an LKB1 intermediate to inactivate CRTC2, a transcriptional coactivator of CREB. Using genome-wide location analysis, we determined that CRTC2 inactivation unexpectedly represses a genetic program that controls GC B cell proliferation, self-renewal, and differentiation while opposing lymphomagenesis. Inhibition of this pathway results in increased GC B cell proliferation, reduced antibody secretion, and impaired terminal differentiation. Multiple distinct pathway disruptions were also identified in human GC B cell lymphoma patient samples. Combined, our data show that CRTC2 inactivation, via physiologic DNA damage response signaling, promotes B cell differentiation in response to genotoxic stress.


Assuntos
Linfócitos B/citologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/imunologia , Citidina Desaminase/genética , Dano ao DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos da radiação , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/efeitos da radiação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica/imunologia , Centro Germinativo/citologia , Humanos , Switching de Imunoglobulina/fisiologia , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Plasmócitos/citologia , Plasmócitos/imunologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
3.
Cancer Immunol Immunother ; 65(9): 1085-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27439500

RESUMO

Natural killer (NK) cells are functionally suppressed in the glioblastoma multiforme (GBM) tumor microenvironment. We have recently shown that survival and differentiation of cancer stem-like cells (CSCs)/poorly differentiated tumors are controlled through two distinct phenotypes of cytotoxic and non-cytotoxic/split anergized NK cells, respectively. In this paper, we studied the function of NK cells against brain CSCs/poorly differentiated GBM and their NK cell-differentiated counterparts. Brain CSCs/poorly differentiated GBM, differentiated by split anergized NK supernatants (supernatants from NK cells treated with IL-2 + anti-CD16mAb) expressed higher levels of CD54, B7H1 and MHC-I and were killed less by the NK cells, whereas their CSCs/poorly differentiated counterparts were highly susceptible to NK cell lysis. Resistance to NK cells and differentiation of brain CSCs/poorly differentiated GBM by split anergized NK cells were mediated by interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Brain CSCs/poorly differentiated GBM expressed low levels of TNFRs and IFN-γRs, and when differentiated and cultured with IL-2-treated NK cells, they induced increased secretion of pro-inflammatory cytokine interleukin (IL)-6 and chemokine IL-8 in the presence of decreased IFN-γ secretion. NK-induced differentiation of brain CSCs/poorly differentiated GBM cells was independent of the function of IL-6 and/or IL-8. The inability of NK cells to lyse GBM tumors and the presence of a sustained release of pro-inflammatory cytokines IL-6 and chemokine IL-8 in the presence of a decreased IFN-γ secretion may lead to the inadequacy of NK cells to differentiate GBM CSCs/poorly differentiated tumors, thus failing to control tumor growth.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Interferon gama/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Células Matadoras Naturais/imunologia , Células-Tronco Neoplásicas/imunologia , Neoplasias Encefálicas/patologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Glioblastoma/patologia , Humanos , Interferon gama/deficiência , Interleucina-2/farmacologia , Células-Tronco Neoplásicas/patologia
4.
J Transl Med ; 12: 275, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25278011

RESUMO

INTRODUCTION: Prostate cancer bone metastasis occurs in 50-90% of men with advanced disease for which there is no cure. Bone metastasis leads to debilitating fractures and severe bone pain. It is associated with therapy resistance and rapid decline. Androgen deprivation therapy (ADT) is standard of care for advanced prostate cancer, however, bone metastatic prostate cancer (PCa) often becomes resistant to ADT. There are few pre-clinical models to understand the interaction between the bone microenvironment and prostate cancer. Here we report the castrate resistant growth in the bone niche of PCSD1, a patient-derived intra-femoral xenograft model of prostate bone metastatic cancer treated with the anti-androgen, bicalutamide. METHODS: PCSD1 bone-niche model was derived from a human prostate cancer femoral metastasis resected during hemiarthroplasty and serially transplanted into Rag2(-/-); γ c(-/-) mice intra-femorally (IF) or sub-cutaneously (SC). At 5 weeks post-transplantation mice received bicalutamide or vehicle control for 18 days. Tumor growth of PCSD1 was measured with calipers. PSA expression in PCSD1 xenograft tumors was determined using quantitative RT-PCR and immunohistochemistry. Expression of AR and PSMA, were also determined with qPCR. RESULTS: PCSD1 xenograft tumor growth capacity was 24 fold greater in the bone (intra-femoral, IF) than in the soft tissue (sub-cutaneous, SC) microenvironment. Treatment with the anti-androgen, bicalutamide, inhibited tumor growth in the sub-cutaneous transplantation site. However, bicalutamide was ineffective in suppressing PCSD1 tumor growth in the bone-niche. Nevertheless, bicalutamide treatment of intra-femoral tumors significantly reduced PSA expression (p < = 0.008) and increased AR (p < = 0.032) relative to control. CONCLUSIONS: PCSD1 tumors were castrate resistant when growing in the bone-niche compared to soft tissue. Bicalutamide had little effect on reducing tumor burden in the bone yet still decreased tumor PSA expression and increased AR expression, thus, this model closely recapitulated castrate-resistant, human prostate cancer bone metastatic disease. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study bone metastatic disease and for pre-clinical drug development of novel therapies for inhibiting therapy resistant prostate cancer growth in the bone-niche.


Assuntos
Neoplasias Ósseas/secundário , Modelos Animais de Doenças , Orquiectomia , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico , Anilidas/uso terapêutico , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Nitrilas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Compostos de Tosil/uso terapêutico
5.
J Transl Med ; 9: 185, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035283

RESUMO

UNLABELLED: Prostate cancer metastasizes to bone in the majority of patients with advanced disease leading to painfully debilitating fractures, spinal compression and rapid decline. In addition, prostate cancer bone metastases often become resistant to standard therapies including androgen deprivation, radiation and chemotherapy. There are currently few models to elucidate mechanisms of interaction between the bone microenvironment and prostate cancer. It is, thus, essential to develop new patient-derived, orthotopic models. Here we report the development and characterization of PCSD1 (Prostate Cancer San Diego 1), a novel patient-derived intra-femoral xenograft model of prostate bone metastatic cancer that recapitulates mixed osteolytic and osteoblastic lesions. METHODS: A femoral bone metastasis of prostate cancer was removed during hemiarthroplasty and transplanted into Rag2(-/-);γc(-/-) mice either intra-femorally or sub-cutaneously. Xenograft tumors that developed were analyzed for prostate cancer biomarker expression using RT-PCR and immunohistochemistry. Osteoblastic, osteolytic and mixed lesion formation was measured using micro-computed tomography (microCT). RESULTS: PCSD1 cells isolated directly from the patient formed tumors in all mice that were transplanted intra-femorally or sub-cutaneously into Rag2(-/-);γc(-/-) mice. Xenograft tumors expressed human prostate specific antigen (PSA) in RT-PCR and immunohistochemical analyses. PCSD1 tumors also expressed AR, NKX3.1, Keratins 8 and 18, and AMACR. Histologic and microCT analyses revealed that intra-femoral PCSD1 xenograft tumors formed mixed osteolytic and osteoblastic lesions. PCSD1 tumors have been serially passaged in mice as xenografts intra-femorally or sub-cutaneously as well as grown in culture. CONCLUSIONS: PCSD1 xenografts tumors were characterized as advanced, luminal epithelial prostate cancer from a bone metastasis using RT-PCR and immunohistochemical biomarker analyses. PCSD1 intra-femoral xenografts formed mixed osteoblastic/osteolytic lesions that closely resembled the bone lesions in the patient. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study metastatic disease in the bone and to develop novel therapies for inhibiting prostate cancer growth in the bone-niche.


Assuntos
Neoplasias Femorais/patologia , Fêmur/patologia , Osteoblastos/patologia , Osteólise/patologia , Neoplasias da Próstata/secundário , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias Femorais/complicações , Neoplasias Femorais/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos SCID , Osteoblastos/metabolismo , Osteólise/complicações , Osteólise/diagnóstico por imagem , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/complicações , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Microtomografia por Raio-X
6.
Nat Med ; 9(8): 1047-54, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12847520

RESUMO

Members of the suppressor of cytokine signaling (SOCS) family are involved in the pathogenesis of many inflammatory diseases. SOCS-3 is predominantly expressed in T-helper type 2 (T(H)2) cells, but its role in T(H)2-related allergic diseases remains to be investigated. In this study we provide a strong correlation between SOCS-3 expression and the pathology of asthma and atopic dermatitis, as well as serum IgE levels in allergic human patients. SOCS-3 transgenic mice showed increased T(H)2 responses and multiple pathological features characteristic of asthma in an airway hypersensitivity model system. In contrast, dominant-negative mutant SOCS-3 transgenic mice, as well as mice with a heterozygous deletion of Socs3, had decreased T(H)2 development. These data indicate that SOCS-3 has an important role in regulating the onset and maintenance of T(H)2-mediated allergic immune disease, and suggest that SOCS-3 may be a new therapeutic target for the development of antiallergic drugs.


Assuntos
Asma/imunologia , Dermatite Atópica/imunologia , Hipersensibilidade/imunologia , Proteínas/metabolismo , Proteínas Repressoras , Células Th2/imunologia , Fatores de Transcrição , Animais , Hiper-Reatividade Brônquica/imunologia , Testes de Provocação Brônquica , Proteínas de Ligação a DNA/metabolismo , Humanos , Hipersensibilidade/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas/genética , Fator de Transcrição STAT4 , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Células Th2/fisiologia , Transativadores/metabolismo
7.
J Cell Biochem ; 111(2): 322-32, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20506196

RESUMO

Debilitating effects of bone marrow from ionizing radiation exposure has been well established for hematopoietic stem cells; however, radiation toxicity of mesenchymal stem cells (MSCs) has been controversial. The present study addressed if ionizing radiation exposure differently affected bone marrow MSCs with various differentiation commitments. Mouse bone-marrow-derived MSCs, D1 cells of early passages (≤ 5 passages; p5) maintained the complete characteristics of multipotent MSCs, whereas, after ≥ 45 passages (p45) the differentiation capability of D1 cells became partially restricted. Both p5 and p45 D1 cells were subjected to single dose irradiation by radioactive isotope (137)Cs. Radiation treatment impaired cell renewal and differentiation activities of p5 D1 cells; however, p45 D1 cells were less affected. Radiation treatment upregulated both pro- and anti-apoptotic genes of p5 D1 cells in a dose-dependent manner, potentially resulting in the various apoptosis thresholds. It was found that constitutive as well as radiation-induced phosphorylation levels of histone H2AX was significantly higher in p45 D1 cells than in p5 D1 cells. The increased repair activity of DNA double-strand breakage may play a role for p45 D1 cells to exhibit the relative radioresistance. In conclusion, the radiation toxicity predominantly affecting multipotent MSCs may occur at unexpectedly low doses, which may, in part, contribute to the catabolic pathology of bone tissue.


Assuntos
Células-Tronco Mesenquimais/efeitos da radiação , Células-Tronco Multipotentes/efeitos da radiação , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Células da Medula Óssea , Diferenciação Celular , Reparo do DNA , Relação Dose-Resposta à Radiação , Histonas/metabolismo , Camundongos , Radiação Ionizante , Regulação para Cima/genética
8.
J Vis Exp ; (156)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065165

RESUMO

Three-dimensional (3D) culture of organoids from tumor specimens of human patients and patient-derived xenograft (PDX) models of prostate cancer, referred to as patient-derived organoids (PDO), are an invaluable resource for studying the mechanism of tumorigenesis and metastasis of prostate cancer. Their main advantage is that they maintain the distinctive genomic and functional heterogeneity of the original tissue compared to conventional cell lines that do not. Furthermore, 3D cultures of PDO can be used to predict the effects of drug treatment on individual patients and are a step towards personalized medicine. Despite these advantages, few groups routinely use this method in part because of the extensive optimization of PDO culture conditions that may be required for different patient samples. We previously demonstrated that our prostate cancer bone metastasis PDX model, PCSD1, recapitulated the resistance of the donor patient's bone metastasis to anti-androgen therapy. We used PCSD1 3D organoids to characterize further the mechanisms of anti-androgen resistance. Following an overview of currently published studies of PDX and PDO models, we describe a step-by-step protocol for 3D culture of PDO using domed or floating basement membrane (e.g., Matrigel) spheres in optimized culture conditions. In vivo stitch imaging and cell processing for histology are also described. This protocol can be further optimized for other applications including western blot, co-culture, etc. and can be used to explore characteristics of 3D cultured PDO pertaining to drug resistance, tumorigenesis, metastasis and therapeutics.


Assuntos
Neoplasias Ósseas/secundário , Organoides/patologia , Neoplasias da Próstata/patologia , Técnicas de Cultura de Tecidos , Neoplasias Ósseas/patologia , Xenoenxertos , Humanos , Masculino
9.
Mol Cancer Res ; 6(3): 426-34, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18337449

RESUMO

Little is known about the factors that influence the proteasome structures in cells and their activity, although this could be highly relevant to cancer therapy. We have previously shown that, within minutes, irradiation inhibits substrate degradation by the 26S proteasome in most cell types. Here, we report an exception in U87 glioblastoma cells transduced to express the epidermal growth factor receptor vIII (EGFRvIII) mutant (U87EGFRvIII), which does not respond to irradiation with 26S proteasome inhibition. This was assessed using either a fluorogenic substrate or a reporter gene, the ornithine decarboxylase degron fused to ZsGreen (cODCZsGreen), which targets the protein to the 26S proteasome. To elucidate whether this was due to alterations in proteasome composition, we used quantitative reverse transcription-PCR to quantify the constitutive (X, Y, Z) and inducible 20S subunits (Lmp7, Lmp2, Mecl1), and 11S (PA28alpha and beta) and 19S components (PSMC1 and PSMD4). U87 and U87EGFRvIII significantly differed in expression of proteasome subunits, and in particular immunosubunits. Interestingly, 2 Gy irradiation of U87 increased subunit expression levels by 16% to 324% at 6 hours, with a coincident 30% decrease in levels of the proteasome substrate c-myc, whereas they changed little in U87EGFRvIII. Responses similar to 2 Gy were seen in U87 treated with a proteasome inhibitor, NPI0052, suggesting that proteasome inhibition induced replacement of subunits independent of the means of inhibition. Our data clearly indicate that the composition and function of the 26S proteasome can be changed by expression of the EGFRvIII. How this relates to the increased radioresistance associated with this cell line remains to be established.


Assuntos
Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteassoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Primers do DNA , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Humanos , Microscopia Confocal , Complexo de Endopeptidases do Proteassoma/efeitos da radiação , Proteínas Recombinantes de Fusão/biossíntese , Retroviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Cancers (Basel) ; 11(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615107

RESUMO

One of many types of extracellular vesicles (EVs), exosomes are nanovesicle structures that are released by almost all living cells that can perform a wide range of critical biological functions. Exosomes play important roles in both normal and pathological conditions by regulating cell-cell communication in cancer, angiogenesis, cellular differentiation, osteogenesis, and inflammation. Exosomes are stable in vivo and they can regulate biological processes by transferring lipids, proteins, nucleic acids, and even entire signaling pathways through the circulation to cells at distal sites. Recent advances in the identification, production, and purification of exosomes have created opportunities to exploit these structures as novel drug delivery systems, modulators of cell signaling, mediators of antigen presentation, as well as biological targeting agents and diagnostic tools in cancer therapy. This review will examine the functions of immunocyte-derived exosomes and their roles in the immune response under physiological and pathological conditions. The use of immunocyte exosomes in immunotherapy and vaccine development is discussed.

11.
Sci Rep ; 9(1): 2111, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765787

RESUMO

In this study, we aimed to identify mutations of key genes associated with docetaxel resistance in nine endometrial cancer cell lines. Endometrial cancers are associated with several critical gene mutations, including PIK3A, PTEN, and KRAS. Different gene mutations in endometrial cancer cells have varied responses to anticancer drugs and cancer therapies. The most frequently altered gene in endometrioid endometrial carcinoma tumors is PTEN. PTEN protein has lipid phosphatase and protein phosphatase activity, as well as other functions in the nucleus. Although the tumor-suppressive function of PTEN has mainly been attributed to its lipid phosphatase activity, a role for PTEN protein phosphatase activity in cell cycle regulation has also been suggested. Various tumor type-specific PTEN mutations are well documented. Here, nine endometrioid endometrial cancer cell lines with PIK3A, PTEN, and KRAS gene mutations were treated with docetaxel and radiation. One mutation with a docetaxel drug-resistant effect was a truncated form of PTEN. Among PTEN mutations in endometrial cancer cells, the Y68 frame shift mutation of PTEN constitutes a major mechanism of resistance to docetaxel treatment. The molecular mechanism involves truncation of the 403 amino acid PTEN protein at amino acid 68 by the Y68 frame shift, leading to the loss of PTEN protein phosphatase and lipid phosphatase activities.


Assuntos
Biomarcadores Tumorais/genética , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias do Endométrio/tratamento farmacológico , Mutação da Fase de Leitura , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/genética , Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Proliferação de Células , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Raios gama , Humanos , Células Tumorais Cultivadas
12.
Cancers (Basel) ; 12(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878338

RESUMO

Abstract: Background and Aims: We have previously demonstrated that the stage of differentiation of tumors has profound effect on the function of NK cells, and that stem-like/poorly differentiated tumors were preferentially targeted by the NK cells. Therefore, in this study we determined the role of super-charged NK cells in immune mobilization, lysis, and differentiation of stem-like/undifferentiated tumors implanted in the pancreas of humanized-BLT (hu-BLT) mice fed with or without AJ2 probiotics. The phenotype, growth rate and metastatic potential of pancreatic tumors differentiated by the NK cells (NK-differentiated) or patient derived differentiated or stem-like/undifferentiated pancreatic tumors were investigated. Methods: Pancreatic tumor implantation was performed in NSG and hu-BLT mice. Stage of differentiation of tumors was determined using our published criteria for well-differentiated tumors exhibiting higher surface expression of MHC- class I, CD54, and PD-L1 (B7H1) and lower expression of CD44 receptors. The inverse was seen for poorly-differentiated tumors. Results: Stem-like/undifferentiated pancreatic tumors grew rapidly and formed large tumors and exhibited lower expression of above-mentioned differentiation antigens in the pancreas of NSG and hu-BLT mice. Unlike stem-like/undifferentiated tumors, NK-differentiated MP2 (MiaPaCa-2) tumors or patient-derived differentiated tumors were not able to grow or grew smaller tumors, and were unable to metastasize in NSG or hu-BLT mice, and they were susceptible to chemotherapeutic drugs. Stem-like/undifferentiated pancreatic tumors implanted in the pancreas of hu-BLT mice and injected with super-charged NK cells formed much smaller tumors, proliferated less, and exhibited differentiated phenotype. When differentiation of stem-like tumors by the NK cells was prevented by the addition of antibodies to IFN-γ and TNF-α, tumors grew rapidly and metastasized, and they remained resistant to chemotherapeutic drugs. Greater numbers of immune cells infiltrated the tumors of NK-injected and AJ2-probiotic bacteria-fed mice. Moreover, increased IFN-γ secretion in the presence of decreased IL-6 was seen in tumors resected and cultured from NK-injected and AJ2 fed mice. Tumor-induced decreases in NK cytotoxicity and IFN-γ secretion were restored/increased within PBMCs, spleen, and bone marrow when mice received NK cells and were fed with AJ2. Conclusion: NK cells prevent growth of pancreatic tumors through lysis and differentiation, thereby curtailing the growth and metastatic potential of stem-like/undifferentiated-tumors.

13.
Apoptosis ; 13(12): 1439-49, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18982452

RESUMO

The aim of this study is to identify potential gene and protein targets when nuclear factor kappa B (NFkappaB) and c-jun N-terminal kinase (JNK) were inversely expressed in oral tumors. To determine which genes were regulated synergistically by the inverse expression of NFkappaB and JNK, a pathway specific microarray analysis was performed. While either inhibition of NFkappaB or activation of JNK alone was unable to affect the IGFBP6 gene expression in microarray analysis, concomitant increase in JNK activation in the presence of NFkappaB inhibition increased the expression of this gene significantly. Synergistic increase in IGFBP6 gene expression was also confirmed by RT-PCR and Northern blot analysis of transfected cells. Accordingly, the levels of IGFBP6 protein secretion rose synergistically when JNK was over-expressed in NFkappaB knock down cells. In addition, increased expression of JNK in the absence of NFkappaB resulted in a significant induction of cell death in oral tumors when either left untreated or treated with TNF-alpha and TPA. Moreover, when JNK was inhibited by dominant negative JNK (APF), a significant decrease in cell death could be observed in TNF-alpha and TPA treated NFkappaB knock down oral tumors. Therefore, increased induction of IGFBP6 gene or protein expression in oral tumors could be regarded as a potential predictive marker of tumor sensitivity and could be used for prognostic purposes, since a significant correlation could be observed between increased induction of apoptotic cell death and elevated levels of IGFBP6 in these tumors.


Assuntos
Regulação da Expressão Gênica , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Bucais , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , NF-kappa B/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/fisiologia
14.
Clin Cancer Res ; 13(8): 2344-53, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17438093

RESUMO

PURPOSE: The expression of suppressors of cytokine signaling 1 (SOCS1) and SOCS3 genes is dysregulated in several solid tumors, causing aberrant activation of cell growth and survival signaling pathways. In this study, we analyzed SOCS1 and SOCS3 gene expression in glioblastoma multiforme (GBM) and studied the role of each protein in GBM cell signaling and radiation resistance. EXPERIMENTAL DESIGN: SOCS1 and SOCS3 gene expression was analyzed in 10 GBM cell lines by reverse transcription-PCR and Western blotting. SOCS3 expression was also studied in 12 primary GBM tissues by immunohistochemistry. The methylation status of the SOCS1 and SOCS3 loci was determined by methylation-specific PCR. Extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) activation in GBM cell lines overexpressing SOCS1 or lacking SOCS3 was determined by phosphorylated-specific Western blotting. Radiation responses in SOCS1-positive and SOCS3-deficient GBM cell lines and fibroblasts from wild-type and SOCS1 or SOCS3 knockout mice were studied in a clonogenic survival assay. RESULTS: All GBM cell lines tested lacked SOCS1 expression, whereas GBM cell lines and primary GBM tumor samples constitutively expressed SOCS3. SOCS1 gene repression was linked to hypermethylation of the SOCS1 genetic locus in GBM cells. Reintroduction of SOCS1 or blocking SOCS3 expression sensitized cells to radiation and decreased the levels of activated ERK MAPKs in GBM cells. CONCLUSIONS: SOCS1 and SOCS3 are aberrantly expressed in GBM cell lines and primary tissues. Altered SOCS gene expression leads to increased cell signaling through the ERK-MAPK pathway and may play a role in disease pathogenesis by enhancing GBM radioresistance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/radioterapia , Tolerância a Radiação , Radiação Ionizante , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Linhagem Celular Tumoral , Metilação de DNA , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/deficiência
15.
Cancer Res ; 66(13): 6756-62, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16818651

RESUMO

Resistance of glioblastoma multiforme to radiotherapy poses a major clinical challenge. Farnesyltransferase inhibitors (FTI), such as R115777, have potential to increase radiotherapeutic benefit in this disease, although their mechanism of action is unclear. In our study with eight glioblastoma multiforme cell lines, the most sensitive ones underwent cell cycle arrest in response to FTI treatment. Radiosensitization by FTIs, however, seemed to involve other pathways. If R115777 treatment was initiated < 6 hours before irradiation, all eight glioblastoma multiforme lines were radiosensitized. However, if the time between drug and radiation was extended to 24 hours, cells harboring wild type but not mutated p53 were able to counteract drug-induced radiosensitization. The involvement of the p53/p21 pathway in the development of resistance was confirmed by showing that U87 cells transfected with human papillomavirus E6 to block p53 or interfering RNA to inhibit p21 stayed radiosensitive for 24 hours after drug treatment. The time dependency of R115777-induced radiosensitization suggested that the initial FTI target for early radiosensitization was short-lived, and that a p21-directed pathway restored resistance. Consideration of prenylated molecules that could potentially be involved led us to consider HDJ-2, a co-chaperone of heat shock protein 70. This hypothesis was strengthened by finding that cellular radiosensitivity was increased by genetic inhibition of HDJ-2, whereas overexpression conferred radioresistance. Importantly, irradiation of cells caused HDJ-2 to migrate from the cytoplasm to the nucleus, and this migration was inhibited by prior FTI treatment. These results have clinical relevance in that they help explain the variability in responses to FTIs that occurs following radiotherapy and elucidate some of the reasons for the complexity underlying FTI-induced radiosensitization.


Assuntos
Farnesiltranstransferase/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Proteínas de Choque Térmico HSP40/fisiologia , Quinolonas/farmacologia , Radiossensibilizantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Terapia Combinada , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidores Enzimáticos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo
16.
Steroids ; 137: 64-69, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859233

RESUMO

Androgen insensitivity syndrome (AIS) is the most common cause of 46,XY disorders of sex development (46,XY DSD). This syndrome is an X-linked recessive genetic disease characterized by resistance to the actions of androgens in an individual with a male karyotype and it is caused by mutations in the androgen receptor (AR) gene. We evaluated two siblings with primary amenorrhea, normal secondary sex characteristics, absence of uterus and ovaries, intra-abdominal testis, and elevated testosterone levels. Sequence analysis of the AR gene revealed a splice acceptor site mutation in intron 2 (c.1769-1G > C). The analysis of mRNA showed that this mutation resulted in the activation of a cryptic splice acceptor site located in intron 2 and in the synthesis of an aberrant mRNA transcript with 69 nucleotides insertion between exon 2 and exon 3, leading to an insertion of 23 amino acids in the AR protein instead of generating a premature termination codon. The additional 23 amino acids insertion affects AR intracellular trafficking by impairing its translocation from the cytoplasm to the nucleus after hormone stimulation. The c.1769-1G > C mutation provides new insights into the molecular mechanism involved in splicing defects and expands the spectrum of mutations associated with the androgen insensitivity syndrome.


Assuntos
Síndrome de Resistência a Andrógenos/genética , Mutação , Sítios de Splice de RNA , Receptores Androgênicos/genética , Adulto , Animais , Células COS , Chlorocebus aethiops , Feminino , Humanos , Masculino , Linhagem , Transporte Proteico
17.
Free Radic Biol Med ; 43(10): 1394-408, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17936186

RESUMO

Resin-based materials are now widely used in dental restorations. Although the use of these materials is aesthetically appealing to patients, it carries the risk of local and systemic adverse effects. The potential risks are direct damage to the cells and induction of immune-based hypersensitivity reactions. Dental pulp stromal cells (DPSCs) and oral keratinocytes are the major cell types which may come in contact with dental resins such as 2-hydroxyethyl methacrylate (HEMA) after dental restorations. Here we show that N-acetylcysteine (NAC) inhibits HEMA-induced apoptotic cell death and restores the function of DPSCs and oral epithelial cells. NAC inhibits HEMA-mediated toxicity through induction of differentiation in DPSCs, because the genes for dentin sialoprotein, osteopontin (OPN), osteocalcin, and alkaline phosphatase, which are induced during differentiation, are also induced by NAC. Unlike NAC, vitamins E and C, which are known antioxidant compounds, failed to prevent either HEMA-mediated cell death or the decrease in VEGF secretion by human DPSCs. More importantly, when added either alone or in combination with HEMA, vitamin E and vitamin C did not increase the gene expression for OPN, and in addition vitamin E inhibited the protective effect of NAC on DPSCs. NAC inhibited the HEMA-mediated decrease in NF-kappaB activity, thus providing a survival mechanism for the cells. Overall, the studies reported in this paper indicate that undifferentiated DPSCs have exquisite sensitivity to HEMA-induced cell death, and their differentiation in response to NAC resulted in an increased NF-kappaB activity, which might have provided the basis for their increased protection from HEMA-mediated functional loss and cell death.


Assuntos
Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Metacrilatos/toxicidade , Fosfatase Alcalina/análise , Ácido Ascórbico/farmacologia , Diferenciação Celular/genética , Proliferação de Células , Citoproteção , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vitamina E/farmacologia
18.
Clin Cancer Res ; 12(7 Pt 1): 1994-2003, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16609008

RESUMO

Down-modulation of CD16 (FcgammaRIII) receptors and loss of natural killer (NK) cell function have been observed in oral cancer patients. However, neither the mechanisms nor the significance of the decrease in CD16 receptors have been fully understood. The cytotoxic activity and survival of NK cells are negatively regulated by antibodies directed against CD16 surface receptor. The addition of anti-CD94 antibody in combination with either F(ab')(2) fragment or intact anti-CD16 antibody to NK cells resulted in significant inhibition of NK cell cytotoxic function and induction of apoptosis in resting human peripheral blood NK cells. Addition of interleukin-2 to anti-CD16 and/or anti-CD94 antibody-treated NK cells significantly inhibited apoptosis and increased the function of NK cells. There was a significant increase in tumor necrosis factor-alpha (TNF-alpha) but not IFN-gamma secretion in NK cells treated either with anti-CD16 antibody alone or in combination with anti-CD94 antibodies. Consequently, the addition of anti-TNF-alpha antibody partially inhibited apoptosis of NK cells mediated by the combination of anti-CD94 and anti-CD16 antibodies. Increase in apoptotic death of NK cells also correlated with an increase in type 2 inflammatory cytokines and in the induction of chemokines. Thus, we conclude that binding of antibodies to CD16 and CD94 NK cell receptors induces death of the NK cells and signals for the release of chemokines.


Assuntos
Antígenos CD/metabolismo , Apoptose/fisiologia , Quimiocinas/metabolismo , Células Matadoras Naturais/fisiologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de IgG/metabolismo , Anticorpos Monoclonais/farmacologia , Antígenos CD/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Proteínas Ligadas por GPI , Humanos , Interleucina-6/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Subfamília D de Receptores Semelhantes a Lectina de Células NK/efeitos dos fármacos , Receptores de IgG/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
Clin Cancer Res ; 11(21): 7674-82, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16278387

RESUMO

PURPOSE: Cyclooxygenase-2 (COX-2), phosphorylated signal transducers and activators of transcription 3 (STAT3), and interleukin-6 (IL-6) are elevated in non-small cell lung cancer (NSCLC). These molecules affect numerous cellular pathways, including angiogenesis and apoptosis resistance, and, therefore, may act in concert in NSCLC. EXPERIMENTAL DESIGN: We examined IL-6 and phosphorylated STAT3 in COX-2-overexpressing [COX-2 sense-oriented (COX-2-S)] NSCLC cells and control cells. The effect of IL-6, STAT3, phosphatidylinositol 3-kinase, and mitogen-activated protein/extracellular signal-regulated kinase kinase on vascular endothelial growth factor (VEGF) production and apoptosis resistance was assessed in COX-2-overexpresing cells. RESULTS: We report that NSCLC cells overexpressing COX-2 (COX-2-S) have increased IL-6 and phosphorylated STAT3 expression compared with control cells. IL-6 induced expression of VEGF in NSCLC cells. Moreover, blocking IL-6, mitogen-activated protein/extracellular signal-regulated kinase kinase, or phosphatidylinositol 3-kinase decreased VEGF production in COX-2-S cells. The addition of IL-6 to NSCLC cells resulted in increased apoptosis resistance. Furthermore, the inhibition of STAT3 or IL-6 induced apoptosis and reduced survivin expression, a member of the inhibitor of apoptosis protein family in COX-2-S cells. CONCLUSIONS: Overall, these findings suggest a novel pathway in which COX-2 activates STAT3 by inducing IL-6 expression. This pathway could contribute to tumor formation by promoting survivin-dependent apoptosis resistance and VEGF production. These findings provide a rationale for the future development of STAT3, IL-6, and/or COX-2-targeted therapies for the treatment of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/fisiologia , Regulação Neoplásica da Expressão Gênica , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/metabolismo , Motivos de Aminoácidos , Apoptose , Western Blotting , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Neovascularização Patológica , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Front Immunol ; 7: 128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148255

RESUMO

Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell-cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of "immune surveillance." Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA