Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Am Chem Soc ; 146(19): 13607-13616, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709316

RESUMO

Materials exhibiting aggregation-induced emission (AIE) are both highly emissive in the solid state and prompt a strongly red-shifted emission and should therefore pose as good candidates toward emerging near-infrared (NIR) applications of organic semiconductors (OSCs). Despite this, very few AIE materials have been reported with significant emissivity past 700 nm. In this work, we elucidate the potential of ortho-carborane as an AIE-active component in the design of NIR-emitting OSCs. By incorporating ortho-carborane in the backbone of a conjugated polymer, a remarkable solid-state photoluminescence quantum yield of 13.4% is achieved, with a photoluminescence maximum of 734 nm. In contrast, the corresponding para and meta isomers exhibited aggregation-caused quenching. The materials are demonstrated for electronic applications through the fabrication of nondoped polymer light-emitting diodes. Devices employing the ortho isomer achieved nearly pure NIR emission, with 86% of emission at wavelengths longer than 700 nm and an electroluminescence maximum at 761 nm, producing a significant light output of 1.37 W sr-1 m-2.

2.
Molecules ; 28(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36615373

RESUMO

There has been a surge in the interest for (semi)transparent photovoltaics (sTPVs) in recent years, since the more traditional, opaque, devices are not ideally suited for a variety of innovative applications spanning from smart and self-powered windows for buildings to those for vehicle integration. Additional requirements for these photovoltaic applications are a high conversion efficiency (despite the necessary compromise to achieve a degree of transparency) and an aesthetically pleasing design. One potential realm to explore in the attempt to meet such challenges is the biological world, where evolution has led to highly efficient and fascinating light-management structures. In this mini-review, we explore some of the biomimetic approaches that can be used to improve both transparent and semi-transparent photovoltaic cells, such as moth-eye inspired structures for improved performance and stability or tunable, coloured, and semi-transparent devices inspired by beetles' cuticles. Lastly, we briefly discuss possible future developments for bio-inspired and potentially bio-compatible sTPVs.


Assuntos
Biomimética , Animais , Besouros
3.
Angew Chem Int Ed Engl ; 60(47): 25005-25012, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34519412

RESUMO

Conjugated polymers are an important class of chromophores for optoelectronic devices. Understanding and controlling their excited state properties, in particular, radiative and non-radiative recombination processes are among the greatest challenges that must be overcome. We report the synthesis and characterization of a molecularly encapsulated naphthalene diimide-based polymer, one of the most successfully used motifs, and explore its structural and optical properties. The molecular encapsulation enables a detailed understanding of the effect of interpolymer interactions. We reveal that the non-encapsulated analogue P(NDI-2OD-T) undergoes aggregation enhanced emission; an effect that is suppressed upon encapsulation due to an increasing π-interchain stacking distance. This suggests that decreasing π-stacking distances may be an attractive method to enhance the radiative properties of conjugated polymers in contrast to the current paradigm where it is viewed as a source of optical quenching.

4.
Chemistry ; 26(70): 16622-16627, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32965707

RESUMO

This work reports the first observation of circularly polarized electroluminescence (CPEL) in thin films of self-organized oligothiophenes. Four new 1,4-phenylene and 9H-carbazole-based oligothiophenes were ad hoc designed to ensure efficient spontaneous formation of chiral supramolecular order. They were easily synthesized and their chiroptical properties in thin films were measured. Circularly polarized luminescence (CPL) spectra revealed glum in the order of 10-2 on a wide wavelengths range, originating from their self-organized chiral supramolecular organization. These molecules have reasonable properties as organic semiconductors and for this reason they can constitute the active layer of circularly-polarized organic light-emitting diodes (CP-OLEDs). Thus, we could investigate directly their electroluminescence (EL) and CPEL, without resorting to blends, but rather in a simple multilayer device with basic architecture. This is the first example of a CP-OLED with active layer made only of a small organic compound.

5.
J Org Chem ; 85(1): 207-214, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682123

RESUMO

Intermolecular interactions play a fundamental role on the performance of conjugated materials in organic electronic devices, as they heavily influence their optoelectronic properties. Synthetic control over the solid state properties of organic optoelectronic materials is crucial to access real life applications. Perylene diimides (PDIs) are one of the most highly studied classes of organic fluorescent dyes. In the solid state, π-π stacking suppresses their emission, limiting their use in a variety of applications. Here, we report the synthesis of a novel PDI dye that is encapsulated by four alkylene straps. X-ray crystallography indicates that intermolecular π-π stacking is completely suppressed in the crystalline state. This is further validated by the photophysical properties of the dye in both solution and solid state and supported by theoretical calculations. However, we find that the introduction of the encapsulating "arms" results in the creation of charge-transfer states which modify the excited state properties. This article demonstrates that molecular encapsulation can be used as a powerful tool to tune intermolecular interactions and thereby gain an extra level of control over the solid state properties of organic optoelectronic materials.

6.
J Am Chem Soc ; 140(5): 1622-1626, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29337534

RESUMO

We present the synthesis and characterization of a series of encapsulated diketopyrrolopyrrole red-emitting conjugated polymers. The novel materials display extremely high fluorescence quantum yields in both solution (>70%) and thin film (>20%). Both the absorption and emission spectra show clearer, more defined features compared to their naked counterparts demonstrating the suppression of inter and intramolecular aggregation. We find that the encapsulation results in decreased energetic disorder and a dramatic increase in backbone colinearity as evidenced by scanning tunnelling microscopy. This study paves the way for diketopyrrolopyrrole to be used in emissive solid state applications and demonstrates a novel method to reduce structural disorder in conjugated polymers.

7.
J Am Chem Soc ; 139(32): 11073-11080, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28598611

RESUMO

The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

8.
Chemphyschem ; 16(6): 1258-62, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25652189

RESUMO

We report the incorporation of graphene-oxide quantum dots (GOQDs) into films, diluted solutions, and light-emitting diodes (LEDs) as part of a water-soluble derivative of poly(p-phenylene vinylene), or PDV.Li, to investigate their impact on the light-emission properties of this model conjugated polymer. Despite the well-known ability of graphene and graphene oxide to quench the photoluminescence of nearby emitters, we find that the addition of GOQDs to diluted solutions of PDV.Li does not significantly affect the photoluminescence (PL) dynamics of PDV.Li, bringing about only a modest quenching of the PL. However, loading the polymer with GOQDs led to a substantial decrease in the turn-on voltage of LEDs based on GOQD-PDV.Li composites. This effect can be attributed to either the improved morphology of the host polymer, resulting in an increase in the charge mobility, or the enhanced injection through GOQDs near the electrodes.

9.
Beilstein J Org Chem ; 11: 2677-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26877789

RESUMO

Two alternating polyfluorene polyrotaxanes (3·TM-ßCD and 3·TM-γCD) have been synthesized by the coupling of 2,7-dibromofluorene encapsulated into 2,3,6-tri-O-methyl-ß- or γ-cyclodextrin (TM-ßCD, TM-γCD) cavities with 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester. Their optical, electrochemical and morphological properties have been evaluated and compared to those of the non-rotaxane counterpart 3. The influence of TM-ßCD or TM-γCD encapsulation on the thermal stability, solubility in common organic solvents, film forming ability was also investigated. Polyrotaxane 3·TM-ßCD exhibits a hypsochromic shift, while 3·TM-γCD displays a bathochromic with respect to the non-rotaxane 3 counterpart. For the diluted CHCl3 solutions the fluorescence lifetimes of all compounds follow a mono-exponential decay with a time constant of ≈0.6 ns. At higher concentration the fluorescence decay remains mono-exponential for 3·TM-ßCD and polymers 3, with a lifetime τ = 0.7 ns and 0.8 ns, whereas the 3·TM-γCD polyrotaxane shows a bi-exponential decay consisting of a main component (with a weight of 98% of the total luminescence) with a relatively short decay constant of τ1 = 0.7 ns and a minor component with a longer lifetime of τ2 = 5.4 ns (2%). The electrochemical band gap (ΔE g ) of 3·TM-ßCD polyrotaxane is smaller than that of 3·TM-γCD and 3, respectively. The lower ΔE g value for 3·TM-ßCD suggests that the encapsulation has a greater effect on the reduction process, which affects the LUMO energy level value. Based on AFM analysis, 3·TM-ßCD and 3·TM-γCD polyrotaxane compounds exhibit a granular morphology with lower dispersity and smaller roughness exponent of the film surfaces in comparison with those of the neat copolymer 3.

10.
Opt Express ; 22(3): 2830-8, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663574

RESUMO

This paper presents new experimental results on a polymer light-emitting diode based visible light communications system. For the first time we demonstrate a 10 Mb/s link based on the on-off keying data format with real time equalization on a field programmable gate array. The 10 Mb/s transmission speed is available at a bit error rate less than 4.6 × 10(-3), which is the limit for forward error correction. At a BER of 10(-6) a transmission speed of 7 Mb/s is readily achievable.

11.
Chemistry ; 19(24): 7771-9, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23616404

RESUMO

We have prepared a new borazine derivative that bears mesityl substituents at the boron centers and displays exceptional chemical stability. Detailed crystallographic and solid-state fluorescence characterizations revealed the existence of several polymorphs, each of which showed different emission profiles. In particular, a bathochromic shift is observed when going from the lower- to the higher-density crystal. Computational investigations of the conformational dynamics of borazine 1 in both the gas phase and in the solid state using molecular dynamics (MD) simulations showed that the conformation of the peripheral aryl groups significantly varies when going from an isolated molecule (in which the rings are able to flip over the 90° barrier at RT) to the crystals (in which the rotation is locked by packing effects), thus generating specific nonsymmetric intermolecular interactions in the different polymorphs. To investigate the optoelectronic properties of these materials by fabrication and characterization of light-emitting diodes (LEDs) and light-emitting electrochemical cells (LECs), borazine 1 was incorporated as the active material in the emissive layer. The current and radiance versus voltage characteristics, as well as the electroluminescence spectra reported here for the first time are encouraging prospects for the engineering of future borazine-based devices.

12.
Macromol Rapid Commun ; 34(12): 990-6, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23553937

RESUMO

Near-infrared (NIR) polymer light-emitting diodes (PLEDs) based on a fluorene-dioctyloxyphenylene wide-gap host material copolymerized with a low-gap emitter are presented. Various loadings (1, 2.5, 10, 20 mol%) of the low-gap emitter are studied, with higher loadings leading to decreased efficiencies likely due to aggregation effects. While the 10 mol% loading resulted in almost pure NIR emission (>99.6%), the 1 mol% loading yielded optimum device performance, which is among the best reported to date for a unblended single-layer pure polymer emitter, with an external quantum efficiencies of 0.04% emitting at 909 nm. The high spectral purity of the PLEDs combined with their performance support the methodology of copolymerization as an effective strategy for developing NIR PLEDs.


Assuntos
Polímeros/química , Raios Infravermelhos , Polimerização/efeitos da radiação , Polímeros/síntese química
13.
Small ; 8(12): 1835-9, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22461298

RESUMO

Threaded molecular wires are shown to feature tunable properties. A new rotaxane based on a quaterthiophene threaded through a single ß-cyclodextrin exhibits delocalization of the aromatic system that is also extended onto the central phenyl rings of the m-terphenylene end-groups. The rotaxane can undergo self-assembly that is better than the analogous bithiophene derivative, due to the increased π-π interactions.

14.
Nano Lett ; 11(6): 2451-6, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21591769

RESUMO

Here we report organic light-emitting diodes incorporating linear and cyclic porphyrin hexamers which have red-shifted emission (λ(PL) = 873 and 920 nm, respectively) compared to single porphyrin rings as a consequence of their extended π-conjugation. We studied the photoluminescence and electroluminescence of blends with poly(9,9'-dioctylfluorene-alt-benzothiadiazole), demonstrating a high photoluminescence quantum efficiency of 7.7% for the linear hexamer when using additives to prevent aggregation and achieving high color purity near-infrared electroluminescence.


Assuntos
Luminescência , Metaloporfirinas/química , Estrutura Molecular , Teoria Quântica
15.
J Mater Chem C Mater ; 10(15): 5929-5933, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35517642

RESUMO

The luminescence and electroluminescence of an ethyne-linked zinc(ii) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs.

16.
Small ; 7(5): 634-9, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21280210

RESUMO

Kelvin probe force microscopy (KPFM) is usually applied to map the local surface potential of nanostructured materials at surfaces and interfaces. KPFM is commonly defined as a 'surface technique', even if this assumption is not fully justified. However, a quantification of the surface sensitivity of this technique is crucial to explore electrical properties at the nanoscale. Here a versatile 3D model is presented which provides a quantitative explanation of KPFM results, taking into account the vertical structure of the sample. The model is tested on nanostructured films obtained from two relevant semiconducting systems for field-effect transistor and solar cell applications showing different interfacial properties, i.e., poly(3-hexylthiophene) (P3HT) and perylene-bis-dicarboximide (PDI). These findings are especially important since they enable quantitative determination of the local surface potential of conjugated nanostructures, and thereby pave the way towards optimization of the electronic properties of nanoscale architectures for organic electronic applications.


Assuntos
Microscopia de Força Atômica/métodos , Nanoestruturas/química , Imidas/química , Nanoestruturas/ultraestrutura , Nanotecnologia , Perileno/análogos & derivados , Perileno/química , Polietilenoglicóis/química , Propriedades de Superfície
17.
iScience ; 24(6): 102545, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34151223

RESUMO

Harnessing cost-efficient printable semiconductor materials as near-infrared (NIR) emitters in light-emitting diodes (LEDs) is extremely attractive for sensing and diagnostics, telecommunications, and biomedical sciences. However, the most efficient NIR LEDs suitable for printable electronics rely on emissive materials containing precious transition metal ions (such as platinum), which have triggered concerns about their poor biocompatibility and sustainability. Here, we review and highlight the latest progress in NIR LEDs based on non-toxic and low-cost functional materials suitable for solution-processing deposition. Different approaches to achieve NIR emission from organic and hybrid materials are discussed, with particular focus on fluorescent and exciplex-forming host-guest systems, thermally activated delayed fluorescent molecules, aggregation-induced emission fluorophores, as well as lead-free perovskites. Alternative strategies leveraging photonic microcavity effects and surface plasmon resonances to enhance the emission of such materials in the NIR are also presented. Finally, an outlook for critical challenges and opportunities of non-toxic NIR LEDs is provided.

18.
Light Sci Appl ; 10(1): 18, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479197

RESUMO

The energy gap law (EG-law) and aggregation quenching are the main limitations to overcome in the design of near-infrared (NIR) organic emitters. Here, we achieve unprecedented results by synergistically addressing both of these limitations. First, we propose porphyrin oligomers with increasing length to attenuate the effects of the EG -law by suppressing the non-radiative rate growth, and to increase the radiative rate via enhancement of the oscillator strength. Second, we design side chains to suppress aggregation quenching. We find that the logarithmic rate of variation in the non-radiative rate vs. EG is suppressed by an order of magnitude with respect to previous studies, and we complement this breakthrough by demonstrating organic light-emitting diodes with an average external quantum efficiency of ~1.1%, which is very promising for a heavy-metal-free 850 nm emitter. We also present a novel quantitative model of the internal quantum efficiency for active layers supporting triplet-to-singlet conversion. These results provide a general strategy for designing high-luminance NIR emitters.

19.
Chem Sci ; 12(23): 8165-8177, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34194707

RESUMO

Efficient charge photogeneration in conjugated polymers typically requires the presence of a second component to act as electron acceptor. Here, we report a novel low band-gap conjugated polymer with a donor/orthogonal acceptor motif: poly-2,6-(4,4-dihexadecyl-4H-cyclopenta [2,1-b:3,4-b']dithiophene)-alt-2,6-spiro [cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene]-2',7'-dicarbonitrile, referred to as PCPDT-sFCN. The role of the orthogonal acceptor is to spatially isolate the LUMO from the HOMO, allowing for negligible exchange energy between electrons in these orbitals and minimising the energy gap between singlet and triplet charge transfer states. We employ ultrafast and microsecond transient absorption spectroscopy to demonstrate that, even in the absence of a separate electron acceptor, PCPDT-sFCN shows efficient charge photogeneration in both pristine solution and film. This efficient charge generation is a result of an isoenergetic singlet/triplet charge transfer state equilibrium acting as a reservoir for charge carrier formation. Furthermore, clear evidence of enhanced triplet populations, which form in less than 1 ps, is observed. Using group theory, we show that this ultrafast triplet formation is due to highly efficient, quantum mechanically allowed intersystem crossing between the bright, initially photoexcited local singlet state and the triplet charge transfer state. Remarkably, the free charges that form via the charge transfer state are extraordinarily long-lived with millisecond lifetimes, possibly due to the stabilisation imparted by the spatial separation of PCPDT-sFCN's donor and orthogonal acceptor motifs. The efficient generation of long-lived charge carriers in a pristine polymer paves the way for single-material applications such as organic photovoltaics and photodetectors.

20.
Small ; 6(24): 2796-820, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21117081

RESUMO

Conjugated polyrotaxanes are conjugated polymeric semiconductors engineered at a supramolecular level by threading the conjugated moiety into molecular macrocycles, such as cyclodextrins (CD). CD-threaded rotaxanes thus provide a class of model compounds with reduced interchain interactions which enable us to explore the influence of such interactions on the fundamental photophysics of conjugated semiconductors. CD rotaxination also endows these materials with additional sites for functionalization, thus resulting in extremely versatile structures. Our current understanding of the photophysics of these materials is reviewed, both in solid/liquid solutions and in neat films, as a function of the relevant parameters, such as the threading ratio and the concentration, and with the help of rotaxanes incorporating a variety of different backbones.


Assuntos
Rotaxanos/química , Ciclodextrinas/química , Fotoquímica , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA