Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nature ; 616(7958): 755-763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046083

RESUMO

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Assuntos
Hematopoiese Clonal , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Alelos , Hematopoiese Clonal/genética , Estudo de Associação Genômica Ampla , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Regiões Promotoras Genéticas
2.
Nature ; 612(7941): 720-724, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477530

RESUMO

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


Assuntos
Consumo de Bebidas Alcoólicas , Predisposição Genética para Doença , Variação Genética , Internacionalidade , Herança Multifatorial , Uso de Tabaco , Humanos , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Fatores de Risco , Uso de Tabaco/genética , Consumo de Bebidas Alcoólicas/genética , Transcriptoma , Tamanho da Amostra , Loci Gênicos/genética , Europa (Continente)/etnologia
3.
Nature ; 610(7933): 704-712, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224396

RESUMO

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Assuntos
Estatura , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Humanos , Estatura/genética , Frequência do Gene/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Europa (Continente)/etnologia , Tamanho da Amostra , Fenótipo
4.
Nature ; 590(7845): 290-299, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568819

RESUMO

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisão , Citocromo P-450 CYP2D6/genética , Haplótipos/genética , Heterozigoto , Humanos , Mutação INDEL , Mutação com Perda de Função , Mutagênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Medicina de Precisão/normas , Controle de Qualidade , Tamanho da Amostra , Estados Unidos , Sequenciamento Completo do Genoma/normas
5.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802043

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Estudo de Associação Genômica Ampla , Medicina de Precisão , Sequenciamento Completo do Genoma/métodos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385699

RESUMO

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Pulmão , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco , Estados Unidos/epidemiologia
7.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932938

RESUMO

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Assuntos
Exoma , Variação Genética , Estudo de Associação Genômica Ampla , Lipídeos/sangue , Fases de Leitura Aberta , Alelos , Glicemia/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Anotação de Sequência Molecular , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
Nat Methods ; 19(12): 1599-1611, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36303018

RESUMO

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Humanos , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Fenótipo , Variação Genética
9.
PLoS Genet ; 18(12): e1010557, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574455

RESUMO

Genetic association studies of many heritable traits resulting from physiological testing often have modest sample sizes due to the cost and burden of the required phenotyping. This reduces statistical power and limits discovery of multiple genetic associations. We present a strategy to leverage pleiotropy between traits to both discover new loci and to provide mechanistic hypotheses of the underlying pathophysiology. Specifically, we combine a colocalization test with a locus-level test of pleiotropy. In simulations, we show that this approach is highly selective for identifying true pleiotropy driven by the same causative variant, thereby improves the chance to replicate the associations in underpowered validation cohorts and leads to higher interpretability. Here, as an exemplar, we use Obstructive Sleep Apnea (OSA), a common disorder diagnosed using overnight multi-channel physiological testing. We leverage pleiotropy with relevant cellular and cardio-metabolic phenotypes and gene expression traits to map new risk loci in an underpowered OSA GWAS. We identify several pleiotropic loci harboring suggestive associations to OSA and genome-wide significant associations to other traits, and show that their OSA association replicates in independent cohorts of diverse ancestries. By investigating pleiotropic loci, our strategy allows proposing new hypotheses about OSA pathobiology across many physiological layers. For example, we identify and replicate the pleiotropy across the plateletcrit, OSA and an eQTL of DNA primase subunit 1 (PRIM1) in immune cells. We find suggestive links between OSA, a measure of lung function (FEV1/FVC), and an eQTL of matrix metallopeptidase 15 (MMP15) in lung tissue. We also link a previously known genome-wide significant peak for OSA in the hexokinase 1 (HK1) locus to hematocrit and other red blood cell related traits. Thus, the analysis of pleiotropic associations has the potential to assemble diverse phenotypes into a chain of mechanistic hypotheses that provide insight into the pathogenesis of complex human diseases.


Assuntos
Estudo de Associação Genômica Ampla , Apneia Obstrutiva do Sono , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Estudos de Associação Genética , Sono , Pleiotropia Genética , Polimorfismo de Nucleotídeo Único , DNA Primase
10.
Am J Hum Genet ; 108(4): 564-582, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713608

RESUMO

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.


Assuntos
População Negra/genética , Estatura/genética , Estudo de Associação Genômica Ampla , África/etnologia , Negro ou Afro-Americano/genética , Europa (Continente)/etnologia , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
11.
Blood ; 139(3): 357-368, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855941

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Assuntos
Hematopoiese Clonal , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Razão de Chances , Doença Pulmonar Obstrutiva Crônica/etiologia , Fatores de Risco , Fumar/efeitos adversos , Sequenciamento do Exoma
12.
Am J Hum Genet ; 106(1): 112-120, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883642

RESUMO

Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European populations that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in >200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry population (n = 23,279) with WGS (∼38× coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evidence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and rs181704186), both of which are non-coding and more common in individuals of African ancestry (∼10% and ∼1% minor allele frequency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry). We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of 2.97 mg/L and major allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic populations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions.


Assuntos
Povo Asiático/genética , População Negra/genética , Proteína C-Reativa/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , População Branca/genética , Sequenciamento Completo do Genoma/métodos , Estudos de Coortes , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação
13.
Am J Respir Crit Care Med ; 206(10): 1271-1280, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35822943

RESUMO

Rationale: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epidemiologic evidence supporting the importance of genetic factors influencing OSA but limited data implicating specific genes. Objectives: To search for rare variants contributing to OSA severity. Methods: Leveraging high-depth genomic sequencing data from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the CFS (Cleveland Family Study), followed by multistage gene-based association analyses in independent cohorts for apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry. Measurements and Main Results: Linkage analysis in the CFS identified a suggestive linkage peak on chromosome 7q31 (LOD = 2.31). Gene-based analysis identified 21 noncoding rare variants in CAV1 (Caveolin-1) associated with lower AHI after accounting for multiple comparisons (P = 7.4 × 10-8). These noncoding variants together significantly contributed to the linkage evidence (P < 10-3). Follow-up analysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (P = 0.024) and higher minimum overnight oxygen saturation (P = 0.007). Conclusions: Rare variants in CAV1, a membrane-scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Caveolina 1/genética , Apneia Obstrutiva do Sono/genética , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala
14.
Proc Natl Acad Sci U S A ; 117(5): 2560-2569, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964835

RESUMO

De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains <1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability (h2), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.


Assuntos
Amish/genética , Genoma Humano , Adulto , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Genética Populacional , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Sequenciamento Completo do Genoma , Adulto Jovem
15.
BMC Genomics ; 23(1): 148, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183128

RESUMO

BACKGROUND: While large genome-wide association studies have identified nearly one thousand loci associated with variation in blood pressure, rare variant identification is still a challenge. In family-based cohorts, genome-wide linkage scans have been successful in identifying rare genetic variants for blood pressure. This study aims to identify low frequency and rare genetic variants within previously reported linkage regions on chromosomes 1 and 19 in African American families from the Trans-Omics for Precision Medicine (TOPMed) program. Genetic association analyses weighted by linkage evidence were completed with whole genome sequencing data within and across TOPMed ancestral groups consisting of 60,388 individuals of European, African, East Asian, Hispanic, and Samoan ancestries. RESULTS: Associations of low frequency and rare variants in RCN3 and multiple other genes were observed for blood pressure traits in TOPMed samples. The association of low frequency and rare coding variants in RCN3 was further replicated in UK Biobank samples (N = 403,522), and reached genome-wide significance for diastolic blood pressure (p = 2.01 × 10- 7). CONCLUSIONS: Low frequency and rare variants in RCN3 contributes blood pressure variation. This study demonstrates that focusing association analyses in linkage regions greatly reduces multiple-testing burden and improves power to identify novel rare variants associated with blood pressure traits.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Pressão Sanguínea/genética , Ligação Genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
16.
Am J Hum Genet ; 105(5): 1057-1068, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31668705

RESUMO

Average arterial oxyhemoglobin saturation during sleep (AvSpO2S) is a clinically relevant measure of physiological stress associated with sleep-disordered breathing, and this measure predicts incident cardiovascular disease and mortality. Using high-depth whole-genome sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) project and focusing on genes with linkage evidence on chromosome 8p23,1,2 we observed that six coding and 51 noncoding variants in a gene that encodes the GTPase-activating protein (DLC1) are significantly associated with AvSpO2S and replicated in independent subjects. The combined DLC1 association evidence of discovery and replication cohorts reaches genome-wide significance in European Americans (p = 7.9 × 10-7). A risk score for these variants, built on an independent dataset, explains 0.97% of the AvSpO2S variation and contributes to the linkage evidence. The 51 noncoding variants are enriched in regulatory features in a human lung fibroblast cell line and contribute to DLC1 expression variation. Mendelian randomization analysis using these variants indicates a significant causal effect of DLC1 expression in fibroblasts on AvSpO2S. Multiple sources of information, including genetic variants, gene expression, and methylation, consistently suggest that DLC1 is a gene associated with AvSpO2S.


Assuntos
Cromossomos Humanos Par 8/genética , Proteínas Ativadoras de GTPase/genética , Oxiemoglobinas/genética , Sono/genética , Proteínas Supressoras de Tumor/genética , Ligação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento Completo do Genoma/métodos
17.
Am J Hum Genet ; 104(2): 260-274, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639324

RESUMO

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.


Assuntos
Estudos de Associação Genética , Modelos Genéticos , Sequenciamento Completo do Genoma , Cromossomos Humanos Par 4/genética , Computação em Nuvem , Feminino , Fibrinogênio/análise , Fibrinogênio/genética , Genética Populacional , Humanos , Masculino , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisão , Projetos de Pesquisa , Fatores de Tempo , Estados Unidos
18.
BMC Med ; 20(1): 5, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016652

RESUMO

BACKGROUND: Genetic and lifestyle factors have considerable effects on obesity and related diseases, yet their effects in a clinical cohort are unknown. This study in a patient biobank examined associations of a BMI polygenic risk score (PRS), and its interactions with lifestyle risk factors, with clinically measured BMI and clinical phenotypes. METHODS: The Mass General Brigham (MGB) Biobank is a hospital-based cohort with electronic health record, genetic, and lifestyle data. A PRS for obesity was generated using 97 genetic variants for BMI. An obesity lifestyle risk index using survey responses to obesogenic lifestyle risk factors (alcohol, education, exercise, sleep, smoking, and shift work) was used to dichotomize the cohort into high and low obesogenic index based on the population median. Height and weight were measured at a clinical visit. Multivariable linear cross-sectional associations of the PRS with BMI and interactions with the obesity lifestyle risk index were conducted. In phenome-wide association analyses (PheWAS), similar logistic models were conducted for 675 disease outcomes derived from billing codes. RESULTS: Thirty-three thousand five hundred eleven patients were analyzed (53.1% female; age 60.0 years; BMI 28.3 kg/m2), of which 17,040 completed the lifestyle survey (57.5% female; age: 60.2; BMI: 28.1 (6.2) kg/m2). Each standard deviation increment in the PRS was associated with 0.83 kg/m2 unit increase in BMI (95% confidence interval (CI) =0.76, 0.90). There was an interaction between the obesity PRS and obesity lifestyle risk index on BMI. The difference in BMI between those with a high and low obesogenic index was 3.18 kg/m2 in patients in the highest decile of PRS, whereas that difference was only 1.55 kg/m2 in patients in the lowest decile of PRS. In PheWAS, the obesity PRS was associated with 40 diseases spanning endocrine/metabolic, circulatory, and 8 other disease groups. No interactions were evident between the PRS and the index on disease outcomes. CONCLUSIONS: In this hospital-based clinical biobank, obesity risk conferred by common genetic variants was associated with elevated BMI and this risk was attenuated by a healthier patient lifestyle. Continued consideration of the role of lifestyle in the context of genetic predisposition in healthcare settings is necessary to quantify the extent to which modifiable lifestyle risk factors may moderate genetic predisposition and inform clinical action to achieve personalized medicine.


Assuntos
Bancos de Espécimes Biológicos , Registros Eletrônicos de Saúde , Índice de Massa Corporal , Estudos Transversais , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Estilo de Vida Saudável , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/genética , Fatores de Risco
19.
Mol Psychiatry ; 26(11): 6293-6304, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33859359

RESUMO

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Pressão Sanguínea/genética , Loci Gênicos/genética , Humanos , Hipertensão/genética , Polimorfismo de Nucleotídeo Único/genética , Sono/genética
20.
J Sleep Res ; 31(2): e13475, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34498326

RESUMO

Impairment of the circadian rhythm promotes lung inflammation and fibrosis in pre-clinical models. We aimed to examine whether short and/or long sleep duration and other markers of sleep-wake patterns are associated with a greater burden of lung parenchymal abnormalities on computed tomography among adults. We cross-sectionally examined associations of sleep duration captured by actigraphy with interstitial lung abnormalities (n = 1111) and high attenuation areas (n = 1416) on computed tomography scan in the Multi-Ethnic Study of Atherosclerosis at Exam 5 (2010-2013). We adjusted for potential confounders in logistic and linear regression models for interstitial lung abnormalities and high attenuation area, respectively. High attenuation area models were also adjusted for study site, lung volume imaged, radiation dose and stratified by body mass index. Secondary exposures were self-reported sleep duration, sleep fragmentation index, sleep midpoint and chronotype. The mean age of those with longer sleep duration (≥ 8 hr) was 70 years and the prevalence of interstitial lung abnormalities was 14%. Increasing actigraphy-based sleep duration among participants with ≥ 8 hr of sleep was associated with a higher adjusted odds of interstitial lung abnormalities (odds ratio of 2.66 per 1-hr increment, 95% confidence interval 1.42-4.99). Longer sleep duration and higher sleep fragmentation index were associated with greater high attenuation area on computed tomography among participants with a body mass index < 25 kg m-2 (p-value for interaction < 0.02). Self-reported sleep duration, later sleep midpoint and evening chronotype were not associated with outcomes. Actigraphy-based longer sleep duration and sleep fragmentation were associated with a greater burden of lung abnormalities on computed tomography scan.


Assuntos
Privação do Sono , Sono , Actigrafia , Idoso , Ritmo Circadiano , Humanos , Pulmão/diagnóstico por imagem , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA