Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Langmuir ; 40(18): 9426-9438, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38441476

RESUMO

Ionic liquids (ILs) are considered functional electrolytes for the electrocatalytic reduction of CO2 (ECO2R) due to their role in the double-layer structure formation and increased CO2 availability at the electrode surface, which reduces the voltage requirement. However, not all ILs are the same, considering the purity and degree of the functionality of the IL. Further, there are critical experimental factors that impact the evaluation of ILs for ECO2R including the reference electrode, working electrode construction, cosolvent selection, cell geometry, and whether the electrochemical cell is a single compartment or a divided cell. Here, we describe improved synthesis methods of imidazolium cyanopyrrolide IL for electrochemical studies in consideration of precursor composition and reaction time. We explored how IL with cosolvents (i.e. acetonitrile, dimethylformamide, dimethyl sulfoxide, propylene carbonate, and n-methyl-2-pyrrolidone) affects conductivity, CO2 mass transport, and ECO2R activation overpotential together with the effects of electrode materials (Sn, Ag, Au, and glassy carbon). Acetonitrile was found to be the best solvent for lowering the onset potential and increasing the catalytic current density for the production of CO owing to the enhanced ion mobility in combination with the silver electrode. Further, the ECO2R activity of molecular catalysts Ni(cyclam)Cl2 and iron tetraphenylsulfonato porphyrin (FeTPPS) on the carbon cloth electrode maintained high Faradaic efficiencies for CO in the presence of the IL. This study presents best practices for examining nontraditional multifunctional electrolytes amenable to integrated CO2 capture and conversion technologies for homogeneous and heterogeneous ECO2R.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38602421

RESUMO

Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis(trifluoromethylsulfonyl)imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2-3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.

3.
Chem Commun (Camb) ; 59(80): 12027-12030, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728412

RESUMO

Choline-based sorbents derived from imidazole (ImH), phenol (PhOH), pyrrole-2-carbonitrile (CNpyrH), and 1,2,4-triazole (TrzH) are developed for CO2 capture to enable alternative regeneration approaches over aqueous amines. During synthesis, the equilibrium between [Ch]+[OH]- and Ch± dipolar in water shifts to support the formation of Ch±ImH and Ch±PhOH in the presence of ImH and PhOH upon drying. In contrast, salts of [Ch]+[CNpyr]- and [Ch]+[Trz]- were obtained with CNpyrH and TrzH, as confirmed by NMR and FTIR spectroscopy. Density functional theory (DFT) calculations support a spontaneous proton transfer from CNpyrH and TrzH to Ch±, while they show an energy barrier in the case of ImH. These sorbents formed eutectic solvents upon mixing with ethylene glycol (EG) where deprotonation of EG and subsequent binding of CO2 contributed to capacities up to 3.56 mol CO2 kg-1 at 25 °C and 1 bar of CO2. The regenerability of the eutectic solvents was demonstrated by dielectric heating via microwaves (MWs) in support of renewable energy utilization. This study shows the impact of proton sharing on the CO2 capacity and regenerability of eutectic sorbents as molecular design guidance.

4.
ChemSusChem ; 16(13): e202300118, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912430

RESUMO

Understanding the oxidative and thermal degradation of CO2 sorbents is essential for assessing long-term sorbent stability in direct air capture (DAC). The potential degradation pathway of imidazolium cyanopyrrolide, an ionic liquid (IL) functionalized for superior CO2 capacity and selectivity, is evaluated under accelerated degradation conditions to elucidate the secondary reactions that can occur during repetitive absorption-desorption thermal-swing cycles. The combined analysis from various spectroscopic, chromatographic, and thermal gravimetric measurements indicated that radical and SN 2 mechanisms in degradation are encouraged by the nucleophilicity of the anion. Thickening of the liquid and gas evolution are accompanied by 50 % reduction in CO2 capacity after a 7-day exposure to O2 under 80 °C. To prevent long exposure to conventional thermal heating, microwave (MW) regeneration of the CO2 -reactive IL is used, where dielectric heating at 80 and 100 °C rapidly desorbs CO2 and regenerates the IL without any measurable degradation.


Assuntos
Dióxido de Carbono , Líquidos Iônicos , Dióxido de Carbono/química , Líquidos Iônicos/química , Micro-Ondas , Oxirredução , Estresse Oxidativo
5.
ACS Catal ; 13(12): 7812-7821, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37342831

RESUMO

Electrochemical conversion of CO2 requires selective catalysts and high solubility of CO2 in the electrolyte to reduce the energy requirement and increase the current efficiency. In this study, the CO2 reduction reaction (CO2RR) over Ag electrodes in acetonitrile-based electrolytes containing 0.1 M [EMIM][2-CNpyr] (1-ethyl-3-methylimidazolium 2-cyanopyrolide), a reactive ionic liquid (IL), is shown to selectively (>94%) convert CO2 to CO with a stable current density (6 mA·cm-2) for at least 12 h. The linear sweep voltammetry experiments show the onset potential of CO2 reduction in acetonitrile shifts positively by 240 mV when [EMIM][2-CNpyr] is added. This is attributed to the pre-activation of CO2 through the carboxylate formation via the carbene intermediate of the [EMIM]+ cation and the carbamate formation via binding to the nucleophilic [2-CNpyr]- anion. The analysis of the electrode-electrolyte interface by surface-enhanced Raman spectroscopy (SERS) confirms the catalytic role of the functionalized IL where the accumulation of the IL-CO2 adduct between -1.7 and -2.3 V vs Ag/Ag+ and the simultaneous CO formation are captured. This study reveals the electrode surface species and the role of the functionalized ions in lowering the energy requirement of CO2RR for the design of multifunctional electrolytes for the integrated capture and conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA