Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nucleic Acids Res ; 51(22): 12043-12053, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953358

RESUMO

Sequence context influences structural characteristics and repair of DNA adducts, but there is limited information on how epigenetic modulation affects conformational heterogeneity and bypass of DNA lesions. Lesions derived from the environmental pollutant 2-nitrofluorene have been extensively studied as chemical carcinogenesis models; they adopt a sequence-dependent mix of two significant conformers: major groove binding (B) and base-displaced stacked (S). We report a conformation-dependent bypass of the N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (dG-FAF) lesion in epigenetic sequence contexts (d[5'-CTTCTC#G*NCCTCATTC-3'], where C# is C or 5-methylcytosine (5mC), G* is G or G-FAF, and N is A, T, C or G). FAF-modified sequences with a 3' flanking pyrimidine were better bypassed when the 5' base was 5mC, whereas sequences with a 3' purine exhibited the opposite effect. The conformational basis behind these variations differed; for -CG*C- and -CG*T-, bypass appeared to be inversely correlated with population of the duplex-destabilizing S conformer. On the other hand, the connection between conformation and a decrease in bypass for flanking purines in the 5mC sequences relative to C was more complex. It could be related to the emergence of a disruptive non-S/B conformation. The present work provides novel conformational insight into how 5mC influences the bypass efficiency of bulky DNA damage.


Assuntos
Adutos de DNA , Fluorenos , Sequência de Bases , Conformação de Ácido Nucleico , Fluorenos/química , Adutos de DNA/genética , Epigênese Genética , Desoxiguanosina/química
2.
Nutr Neurosci ; : 1-11, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662341

RESUMO

Malnutrition is a highly prevalent complication in patients with traumatic brain injury (TBI), and it is closely related to the prognosis of patients. Accurate identification of patients at high risk of malnutrition is essential. Therefore, we analyzed the risk factors of malnutrition in patients with TBI and developed a model to predict the risk of malnutrition. A retrospective collection of 345 patients with TBI, and they were divided into malnutrition and comparison groups according to the occurrence of malnutrition. Univariate correlation and multifactor logistic regression analyses were performed to determine patients' malnutrition risk factors. We used univariate and logistic regression (forward stepwise method) analyses to identify significant predictors associated with malnutrition in patients with TBI and developed a predictive model for malnutrition prediction. The model's discrimination, calibration, and clinical utility were evaluated using the receiver operating characteristic (ROC) curve, calibration plots, and decision curve analysis (DCA). A total of 216 patients (62.6%) developed malnutrition. Multifactorial logistic regression analysis showed that pulmonary infection, urinary tract infection, dysphagia, application of NGT, GCS score ≤ 8, and low ADL score were independent risk factors for malnutrition in patients with TBI (P < 0.05). The area under the curve of the model was 0.947. Calibration plots showed good discrimination of model calibration. DCA showed that the column line plot models were all clinically meaningful when nutritional interventions were performed over a considerable range of threshold probabilities (0-0.98). Malnutrition is widespread in patients with TBI, and the nomogram is a good predictor of whether patients develop malnutrition.

3.
Chem Res Toxicol ; 36(4): 703-713, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001030

RESUMO

Despite an exponential increase in PFAS research over the past two decades, the mechanisms behind how PFAS cause adverse health effects are still poorly understood. Protein interactions are considered a significant driver of bioaccumulation and subsequent toxicity from re-exposure; however, most of the available literature is limited to legacy PFAS. We utilized microcalorimetric and spectroscopic methods to systematically investigate the binding between human serum albumin (HSA) and perfluorocarboxylic acids (PFCAs) of varying chain lengths and their nonfluorinated fatty acid (FA) counterparts. The results reveal the optimal chain length for significant PFCA-HSA binding and some fundamental interactions, i.e., the polar carboxylic head of PFCA is countered by ionizable amino acids such as arginine, and the fluorocarbon tails stabilized by hydrophobic residues like leucine and valine. Additionally, fluorine's unique polarizability contributes to PFCA's stronger binding affinities relative to the corresponding fatty acids. Based on these observations, we posit that PFCAs likely bind to HSA in a "cavity-filling" manner, provided they have an appropriate size and shape to accommodate the electrostatic interactions. The results reported herein widen the pool of structural information to explain PFAS bioaccumulation patterns and toxicity and support the development of more accurate computational modeling of protein-PFAS interactions. TOC graphic created with Biorender.com.


Assuntos
Fluorocarbonos , Albumina Sérica Humana , Humanos , Aminoácidos , Ácidos Carboxílicos/metabolismo , Ácidos Graxos , Fluorocarbonos/química , Espectrometria de Fluorescência , Calorimetria
4.
J Org Chem ; 88(5): 3238-3253, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36866581

RESUMO

A practical and efficient electrochemical intramolecular amino- or oxysulfonylation of internal alkenes equipped with pendant nitrogen or oxygen-centered nucleophiles with sodium sulfinate was developed. Under undivided electrolytic cell conditions, a variety of sulfonylated N-heterocycles and O-heterocycles, such as tetrahydrofurans, tetrahydropyrans, oxepanes, tetrahydropyrroles, piperidines, δ-valerolactones, etc., were efficiently prepared from easily accessible unsaturated alcohols, carboxylic acids, and N-tosyl amines without the need for additional metal or exogenous oxidant. The robust electrochemical transformation features excellent redox economy, high diastereoselectivity, and broad substrate specificity, which provide a general and practical access to sulfone-containing heterocycles and would facilitate the related synthetic and biological studies based on this electrosynthesis.

5.
Biochem Genet ; 61(6): 2481-2495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37118619

RESUMO

Gambogic acid (GA) has been observed to effectively impede the progression of numerous types of cancers. In this study, we investigated the effects of miR-1275 and Secreted Protein Acidic and Cysteine Rich (SPARC) on GA in gastric cancer (GC). miR-1275 and SPARC expression were determined in GC cell lines and tissues using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The correlation between miR-1275 and SPARC expression was ascertained using Pearson's correlation coefficient. Cell proliferation was assessed using the cell counting kit-8 (CCK-8) assay. The Transwell assay was conducted to examine cell migration. A dual-luciferase reporter assay was used to verify the regulatory relationship between miR-1275 and SPARC. The levels of SPARC, Bcl-2, and Bax proteins were estimated using western blotting. To verify the effects of GA on the growth of GC cells in vivo, a tumorigenesis experiment was performed in nude mice. GA suppressed GC cell viability and migration, facilitated apoptosis, and inhibited tumor growth in vivo and in vitro. Low levels of miR-1275 been observed in GC cell lines and tissues. GA-treated GC cells manifested high miR-1275 levels. In functional experiments, miR-1275 enhanced the influence of GA on cell apoptosis, migration, and proliferation. Furthermore, GA treatment suppressed SPARC upregulation in GC cell lines and tissues. Pearson's correlation coefficient revealed that miR-1275 expression negatively correlated with SPARC expression. Mechanistically, miR-1275 promoted growth inhibition in GA-treated GC cells by targeting SPARC. Our study indicates that miR-1275 enhances the suppressive effect of GA on GC progression by inhibiting SPARC expression. Through this study, we contribute to the knowledge of a new mechanism by which GA suppresses GC progression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Movimento Celular
6.
J Environ Manage ; 344: 118478, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393876

RESUMO

The implementation of Personal Carbon Trading (PCT) holds promise in facilitating a noteworthy contribution towards the attainment of emissions reduction predicated on consumption patterns and consequently motivating lifestyle modifications. As individual consumption behaviors usually lead to continuous changes in carbon emissions, it is crucial to rethink PCT from a systematic perspective. This review employed a bibliometric analysis of 1423 papers related to PCT, highlighting the key themes of carbon emissions from energy consumption, climate change, and public opinion on policies in the context of PCT. Most of the existing PCT researches focus on theoretical assumptions and public attitudes, while the quantification of carbon emissions and simulation of PCT require further investigation. Furthermore, the concept of Tan Pu Hui is seldom addressed in PCT studies and case analyses. Moreover, there are limited PCT schemes worldwide that can be directly implemented in practice, leading to a scarcity of large-scale, high-participation case studies. To address these gaps, this review proposes a framework to clarify how PCT can stimulate individual emission reductions on the consumption side, comprising two phases, from motivation to behavior and behavior to target. Future endeavors should prioritize the enhancement of the systematic study of the theoretical foundation of PCT, encompassing carbon emissions accounting and policy design, the incorporation of cutting-edge technology, and the reinforcement of integrated policy practice. This review serves as a valuable reference for future research endeavors and policymaking efforts.


Assuntos
Carbono , Formulação de Políticas , Mudança Climática , Simulação por Computador , Dióxido de Carbono/análise , China
7.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770612

RESUMO

Tyrosinase (TYR) plays a key role in the enzymatic reaction that is responsible for a range of unwanted discoloration effects, such as food browning and skin hyperpigmentation. TYR inhibitors could, therefore, be candidates for skin care products that aim to repair pigmentation problems. In this study, we used a metabolomics approach combined with the isobologram analysis to identify anti-TYR compounds within natural resources, and evaluate their possible synergism with each other. Rheum palmatum was determined to be a model plant for observing the effect, of which seven extracts with diverse phytochemicals were prepared by way of pressurized solvent extraction. Each Rheum palmatum extract (RPE) was profiled using nuclear magnetic resonance spectroscopy and its activity of tyrosinase inhibition was evaluated. According to the orthogonal partial least square analysis used to correlate phytochemicals in RPE with the corresponding activity, the goodness of fit of the model (R2 = 0.838) and its predictive ability (Q2 = 0.711) were high. Gallic acid and catechin were identified as the active compounds most relevant to the anti-TYR effect of RPE. Subsequently, the activity of gallic acid and catechin were evaluated individually, and when combined in various ratios by using isobologram analysis. The results showed that gallic acid and catechin in the molar ratios of 9:5 and 9:1 exhibited a synergistic inhibition on TYR, with a combination index lower than 0.77, suggesting that certain combinations of these compounds may prove effective for use in cosmetic, pharmaceutical, and food industries.


Assuntos
Catequina , Rheum , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rheum/química , Ácido Gálico , Compostos Fitoquímicos/farmacologia
8.
Proc Natl Acad Sci U S A ; 116(36): 17701-17706, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431528

RESUMO

Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with 2 distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin-orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.

9.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144858

RESUMO

The replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its main protease (Mpro), which is a plausible therapeutic target for coronavirus disease 2019 (COVID-19). Although numerous in silico studies reported the potential inhibitory effects of natural products including cannabis and cannabinoids on SARS-CoV-2 Mpro, their anti-Mpro activities are not well validated by biological experimental data. Herein, a library of minor cannabinoids belonging to several chemotypes including tetrahydrocannabinols, cannabidiols, cannabigerols, cannabichromenes, cannabinodiols, cannabicyclols, cannabinols, and cannabitriols was evaluated for their anti-Mpro activity using a biochemical assay. Additionally, the binding affinities and molecular interactions between the active cannabinoids and the Mpro protein were studied by a biophysical technique (surface plasmon resonance; SPR) and molecular docking, respectively. Cannabinoids tetrahydrocannabutol and cannabigerolic acid were the most active Mpro inhibitors (IC50 = 3.62 and 14.40 µM, respectively) and cannabigerolic acid had a binding affinity KD=2.16×10-4 M). A preliminary structure and activity relationship study revealed that the anti-Mpro effects of cannabinoids were influenced by the decarboxylation of cannabinoids and the length of cannabinoids' alkyl side chain. Findings from the biochemical, biophysical, and computational assays support the growing evidence of cannabinoids' inhibitory effects on SARS-CoV-2 Mpro.


Assuntos
Produtos Biológicos , COVID-19 , Canabinoides , Antivirais/química , Antivirais/farmacologia , Benzoatos , Canabinoides/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Ressonância de Plasmônio de Superfície , Proteínas não Estruturais Virais/metabolismo
10.
Phys Rev Lett ; 124(2): 027205, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004044

RESUMO

Quantum critical points often arise in metals perched at the border of an antiferromagnetic order. The recent observation of singular and dynamically scaling charge conductivity in an antiferromagnetic quantum critical heavy fermion metal implicates beyond-Landau quantum criticality. Here we study the charge and spin dynamics of a Kondo destruction quantum critical point (QCP), as realized in an SU(2)-symmetric Bose-Fermi Kondo model. We find that the critical exponents and scaling functions of the spin and single-particle responses of the QCP in the SU(2) case are essentially the same as those of the large-N limit, showing that 1/N corrections are subleading. Building on this insight, we demonstrate that the charge responses at the Kondo destruction QCP are singular and obey ω/T scaling. This property persists at the Kondo destruction QCP of the SU(2)-symmetric Kondo lattice model.

11.
Clin Lab ; 66(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337836

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Based on clinical data, CRC could be cured by surgery with favorable outcomes if diagnosed at an early stage. The present study aimed to determine whether circ-FMN2, circ-LMNB1, and circ-ZNF609 may serve as potential biomarkers for CRC. METHODS: Expression levels of circ-FMN2, circ-LMNB1, and circ-ZNF609 were detected in serum samples from 88 CRC patients and 68 healthy volunteers by real-time quantitative PCR (RT-qPCR). The correlation between circRNA expressions and clinicopathological parameters was analyzed subsequently. The ROC curve analysis and survival curves were calculated and compared in order to explore the diagnostic and prognostic values of circ-RNAs in CRC. RESULTS: The results verified that circ-FMN2, circ-LMNB1, and circ-ZNF609 were significantly elevated in serum samples of CRC patients compared with healthy controls (p < 0.01). Increased circ-FMN2, circ-LMNB1, and circ-ZNF609 expressions were markedly positively correlated with histological grade (p < 0.0001, p = 0.0014, p = 0.0303), lymph nodes metastasis (p < 0.0001, p < 0.0001, p = 0.0093), and TNM stage (p = 0.0055, p = 0.0110, p < 0.000). Meanwhile, the ROC curve analysis verified the diagnostic accuracy of circ-FMN2, circ-LMNB1, and circ-ZNF609 with AUC of 0.9153 (95% CI = 0.8707 ~ 0.9599), 0.9627 (95% CI = 0.9351 ~ 0.9903), and 0.8711 (95% CI = 0.8151 ~ 0.9270), respectively. Furthermore, the CRC patients with high circ-FMN2, circ-LMNB1, and circ-ZNF609 had significantly worse outcomes than those with low expression (p = 0.0267, p = 0.0145, p = 0.0194). CONCLUSIONS: The present study elucidated that circ-FMN2, circ-LMNB1, and circ-ZNF609 may function as potential diagnostic and prognostic indicators for CRC detection.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , RNA Circular , Biomarcadores , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Humanos , RNA
12.
Nucleic Acids Res ; 46(12): 6356-6370, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29800374

RESUMO

4-Aminobiphenyl (ABP) and its structure analog 2-aminofluorene (AF) are well-known carcinogens. In the present work, an unusual sequence effect in the 5'-CTTCTG1G2TCCTCATTC-3' DNA duplex is reported for ABP- and AF-modified G. Specifically, the ABP modification at G1 resulted in a mixture of 67% major groove B-type (B) and 33% stacked (S) conformers, while at the ABP modification at G2 exclusively resulted in the B-conformer. The AF modification at G1 and G2 lead to 25%:75% and 83%:17% B:S population ratios, respectively. These differences in preferred conformation are due to an interplay between stabilizing (hydrogen bonding and stacking that is enhanced by lesion planarity) and destabilizing (solvent exposure) forces at the lesion site. Furthermore, while the B-conformer is a thermodynamic stabilizer and the S-conformer is a destabilizer in duplex settings, the situation is reversed at the single strands/double strands (ss/ds) junction. Specifically, the twisted biphenyl is a better stacker at the ss/ds junction than the coplanar AF. Therefore, the ABP modification leads to a stronger strand binding affinity of the ss/ds junction than the AF modification. Overall, the current work provides conformational insights into the role of sequence and lesion effects in modulating DNA replication.


Assuntos
Compostos de Aminobifenil/química , Carcinógenos/química , Adutos de DNA/química , Replicação do DNA , Fluorenos/química , Sequência de Bases , DNA/química , Desoxiguanosina/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Termodinâmica
13.
Molecules ; 24(8)2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31009995

RESUMO

Bulky organic carcinogens are activated in vivo and subsequently react with nucleobases of cellular DNA to produce adducts. Some of these DNA adducts exist in multiple conformations that are slowly interconverted to one another. Different conformations have been implicated in different mutagenic and repair outcomes. However, studies on the conformation-specific inhibition of replication, which is more relevant to cell survival, are scarce, presumably due to the structural dynamics of DNA lesions at the replication fork. It is difficult to capture the exact nature of replication inhibition by existing end-point assays, which usually detect either the ensemble of consequences of all the conformers or the culmination of all cellular behaviors, such as mutagenicity or survival rate. We previously reported very unusual sequence-dependent conformational heterogeneities involving FABP-modified DNA under different sequence contexts (TG1*G2T [67%B:33%S] and TG1G2*T [100%B], G*, N-(2'-deoxyguanosin-8-yl)-4'-fluoro-4-aminobiphenyl) (Cai et al. Nucleic Acids Research, 46, 6356-6370 (2018)). In the present study, we attempted to correlate the in vitro inhibition of polymerase activity to different conformations from a single FABP-modified DNA lesion. We utilized a combination of surface plasmon resonance (SPR) and HPLC-based steady-state kinetics to reveal the differences in terms of binding affinity and inhibition with polymerase between these two conformers (67%B:33%S and 100%B).


Assuntos
Compostos de Aminobifenil/química , Carcinógenos/química , Replicação do DNA , DNA/química , DNA/genética , Conformação de Ácido Nucleico , Compostos de Aminobifenil/toxicidade , Sequência de Bases , Carcinógenos/toxicidade , Replicação do DNA/efeitos dos fármacos , Cinética , Conformação Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Oligonucleotídeos/química , Oligonucleotídeos/genética
14.
Bioorg Med Chem Lett ; 26(19): 4705-4708, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27567367

RESUMO

Eudistomin U is a member of the ß-carboline class of heterocyclic amine-containing molecules that are capable of binding to DNA. The structure of eudistomin U is unique since it contains an indole ring at the 1-position of the pyridine ring. While simple ß-carbolines are reported to intercalate DNA, an examination of the mode of binding of eudistomin U has been lacking. We report preliminary spectroscopic (UV-Vis, thermal denaturation, CD) and calorimetric (DSC) data on the binding of eudistomin U to DNA, which suggest that eudistomin U binds weakly according to a mechanism that is more complicated than other members of its class.


Assuntos
Carbolinas/química , DNA/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
15.
Nutrition ; 123: 112423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583267

RESUMO

BACKGROUND: Although malnutrition has been shown to influence the clinical outcome of poststroke disabled patients, the associated factors and the prediction model have yet to be uncovered. OBJECTIVES: This study aims to assess the current prevalence and factors associated with malnutrition in poststroke disabled patients and establish a prediction model. METHODS: A multicenter cross-sectional survey among Chinese poststroke disabled patients (≥18 y old) was conducted in 2021. Information on patients' basic data, medical history, Barthel Index, dysphagia, and nutritional status was collected. A multivariable logistic regression model was used to identify the factors that influence malnutrition. Nomogram was developed and internal validation was conducted using 5-fold cross-validation. External validation was performed using the data from a preliminary survey. Receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA) were used to analyze the predictive value of the nomogram. RESULTS: Four hundred fifty-seven cases were enrolled, with the prevalence of malnutrition as 71.77%. Age (aOR = 1.039, 95% CI: 1.006-1.078), pulmonary infection (aOR = 4.301, 95% CI: 2.268-14.464), dysphagia (aOR = 24.605, 95% CI: 4.966-191.058), total intake volume (aOR = 0.997, 95% CI: 0.995-0.999), Barthel Index (aOR = 0.965, 95% CI: 0.951-0.980), and nasogastric tube (aOR = 16.529, 95% CI: 7.418-52.518) as nutrition support mode (compared to oral intake) were identified as the associated factors of malnutrition in stroke-disabled patients (P < 0.05). ROC analysis showed that the area under the curve (AUC) for nomogram was 0.854 (95% CI: 0.816-0.892). Fivefold cross-validation showed the mean AUC as 0.829 (95% CI: 0.784-0.873). There were no significant differences between predicted and actual probabilities. The DCA revealed that the model exhibited a net benefit when the risk threshold was between 0 and 0.4. CONCLUSIONS: Age, pulmonary infection, dysphagia, nutrition support mode, total intake volume, and Barthel Index were factors associated with malnutrition in stroke-related disabled patients. The nomogram based on the result exhibited good accuracy, consistency and values.


Assuntos
Desnutrição , Nomogramas , Acidente Vascular Cerebral , Humanos , Estudos Transversais , Desnutrição/epidemiologia , Desnutrição/etiologia , Desnutrição/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Idoso , Prevalência , China/epidemiologia , Fatores de Risco , Pessoas com Deficiência/estatística & dados numéricos , Estado Nutricional , Curva ROC , Modelos Logísticos , Valor Preditivo dos Testes , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/estatística & dados numéricos , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/epidemiologia , Adulto , Avaliação Nutricional
16.
Front Nutr ; 11: 1392217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694222

RESUMO

Background: Although malnutrition has been shown to influence the clinical outcomes of Stroke Patients with Bulbar Paralysis (SPBP), the prevalence and influencing factors have yet to be uncovered. Objective: This study aims to assess the current prevalence and factors associated with malnutrition in SPBP. Methods: A multicenter cross-sectional investigation was conducted among SPBP in China from 2019 to 2021. Information was collected on basic information, health condition, diagnosis, treatment, neurological function, activities of daily living, swallowing function, and nutritional status. A multivariable logistic regression model was used to identify the factors that influenced nutritional status. ROC analysis was used to assess the predictive value of each independent influencing factor and the logit model. Results: In total, 774 SPBP were enrolled, and the prevalence of malnutrition was 60.59%. Pulmonary infection [aOR:2.849, 95%CI: (1.426, 5.691)], hemoglobin [aOR: 0.932, 95%CI: (0.875, 0.982)], serum albumin [aOR: 0.904, 95%CI: (0.871, 0.938)], total protein [aOR: 0.891, 95%CI: (0.819, 0.969)], prealbumin [aOR: 0.962, 95%CI: (0.932, 0.993)], and National Institute of Health Stroke Scale (NIHSS) scores [aOR: 1.228, 95%CI: (1.054, 1.431)] were independent factors associated with malnutrition in SPBP. ROC analysis revealed that the logit model had the best predictive value [area under the curve: 0.874, 95% CI: (0.812, 0.936); specificity: 83.4%; sensitivity: 79.3%; p < 0.05]. Subgroup analysis showed that the nutritional status in dysphagic SPBP was additionally influenced by swallowing function and nutrition support mode. Conclusion: The prevalence of malnutrition in SPBP was 60.59%. Pulmonary infection, hemoglobin level, and NIHSS score were the independent factors associated with malnutrition. Swallowing function and nutrition support mode were the factors associated with malnutrition in dysphagic SPBP.

17.
Heliyon ; 9(11): e21265, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920520

RESUMO

P2X purinoceptor 4 (P2X4) is an ATP-gated ion channel receptor with diverse neurophysiological functions, and P2X4 modulators hold promise as potential therapeutics for neuropathic pain, neuroinflammation, and neurodegenerative diseases. While several cannabinoids have been reported as modulators of purinoreceptors, their specific purinoreceptor-binding characteristics remain elusive. In this study, we established a comprehensive workflow that included a binding screening platform and a novel surface plasmon resonance (SPR) competitive assay, complemented by computational docking, to identify potential P2X4 binders among a panel of twenty-eight cannabinoids. Through SPR, we determined the binding affinities of cannabinoids (KD values ranging from 3.4 × 10-4 M to 1 × 10-6 M), along with two known P2X4 antagonists, BX430 (KD = 4.5 × 10-6 M) and 5-BDBD (KD = 7.8 × 10-6 M). The competitive SPR assay validated that BX430 and 5-BDBD acted as non-competitive binders with P2X4. In the following competitive assays, two cannabinoids including cannabidiol (CBD) and cannabivarin (CBV) were identified as competitive P2X4-binders with 5-BDBD, while the remaining cannabinoids exhibited non-competitive binding with either BX430 or 5-BDBD. Our molecular docking experiments further supported these findings, demonstrating that both CBD and CBV shared identical binding sites with residues in the 5-BDBD binding pocket on P2X4. In conclusion, this study provides valuable insights into the P2X4-binding affinity of cannabinoids through SPR and sheds light on the interactions between cannabinoids (CBD and CBV) and P2X4.

18.
Bio Protoc ; 13(15): e4765, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575393

RESUMO

Blockade of the programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) axis is a promising strategy for cancer immunotherapy. Although antibody-based PD-1/PD-L1 inhibitors have shown remarkable results in clinical cancer studies, their inherent limitations underscore the significance of developing novel PD-1/PD-L1 inhibitors. Small molecule inhibitors have several advantages over antibody-based inhibitors, including favorable tumor penetration and oral bioavailability, fewer side effects, easier administration, preferred biological half-life, and lower cost. However, small molecule inhibitors that directly target the PD-1/PD-L1 interaction are still in the early development stage, partially due to the lack of reliable biophysical assays. Herein, we present a novel PD-1/PD-L1 blockade assay using a surface plasmon resonance (SPR)-based technique. This blockade assay immobilizes human PD-1 on a sensor chip, which interacts with PD-L1 inhibitors or negative PD-L1 binders with human PD-L1 protein at a range of molecular ratios. The binding kinetics of PD-L1 to PD-1 and the blockade rates of small molecules were determined. Compared to other techniques such as PD-1/PD-L1 pair enzyme-linked immunosorbent assay (ELISA) and AlphaLISA immunoassays, our SPR-based method offers real-time and label-free detection with advantages including shorter experimental runs and smaller sample quantity requirements. Key features A SPR protocol screens compounds for their capacity to block the PD-1/PD-L1 interaction. Validation of PD-1/PD-L1 interaction, followed by assessing blockade effects with known inhibitors BMS-1166 and BMS-202, and a negative control NO-Losartan A. Analysis of percentage blockade of PD-1/PD-L1 of the samples to obtain the IC50. Broad applications in the discovery of small molecule-based PD-1/PD-L1 inhibitors for cancer immunotherapy. Graphical overview.

20.
J Pharm Biomed Anal ; 214: 114750, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35398615

RESUMO

A cannabidiol (CBD) oral solution (Epidiolex®) has been approved by the United States Food and Drug Administration to treat seizure conditions. However, the biomedical and pharmaceutical applications of CBD are hindered partially due to a limited understanding of CBD's pharmacokinetic behaviors, such as its interactions with plasma proteins. Herein, we investigated the molecular interactions between CBD and two plasma proteins, namely, human serum albumin (HSA) and γ-globulin, using biophysical techniques including surface plasmon resonance (SPR), isothermal titration calorimetry, and differential scanning calorimetry, as well as molecular docking. CBD bound to HSA and γ-globulin in an exothermic manner (enthalpy: -9.3 ×104 and -3.7 ×104 kcal/mol, respectively) with a binding affinity of 1.8 × 10-5 and 1.3 × 10-5 M, respectively. The binding ratio between CBD and HSA or γ-globulin was approximately 1:1 and 3:1, respectively. Furthermore, computational modeling suggested that CBD and warfarin may bind to HSA independently, supported by data from a competitive SPR binding assay. Findings from the current study elucidate CBD's plasma protein binding characteristics and shed light on their impact on CBD's pharmacokinetic property.


Assuntos
Canabidiol , Calorimetria/métodos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica/química , Albumina Sérica Humana/química , Ressonância de Plasmônio de Superfície , gama-Globulinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA