Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Hum Mol Genet ; 32(4): 567-579, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067023

RESUMO

DNA damage response (DDR) is an important signaling-transduction network that promotes the repair of DNA lesions which can induce and/or support diseases. However, the mechanisms involved in its regulation are not fully understood. Recent studies suggest that the peroxiredoxin 5 (Prdx5) enzyme, which detoxifies reactive oxygen species, is associated to genomic instability and signal transduction. Its role in the regulation of DDR, however, is not well characterized. In this study, we demonstrate a role of Prdx5 in the regulation of the DDR signaling pathway. Knockdown of Prdx5 resulted in DNA damage manifested by the induction of phosphorylated histone H2AX (γ-H2AX) and p53-binding protein 1 (53BP1). We show that Prdx5 regulates DDR through (1) polo-like kinase 1 (Plk1) mediated phosphorylation of ataxia telangiectasia mutated (ATM) kinase to further trigger downstream mediators Chek1 and Chek2; (2) the increase of the acetylation of p53 at lysine 382, stabilizing p53 in the nucleus and enhancing transcription and (3) the induction of autophagy, which regulates the recycling of molecules involved in DDR. We identified Sirt2 as a novel deacetylase of p53 at lysine 382, and Sirt2 regulated the acetylation status of p53 at lysine 382 in a Prdx5-dependent manner. Furthermore, we found that exogenous expression of Prdx5 decreased DNA damage and the activation of ATM in Pkd1 mutant renal epithelial cells, suggesting that Prdx5 may play a protective role from DNA damage in cystic renal epithelial cells. This study identified a novel mechanism of Prdx5 in the regulation of DDR through the ATM/p53/Sirt2 signaling cascade.


Assuntos
Histonas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Histonas/metabolismo , Peroxirredoxinas/genética , Sirtuína 2/metabolismo , Lisina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Fosforilação , Dano ao DNA
2.
Hum Mol Genet ; 32(7): 1114-1126, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36322156

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is driven by mutations in the PKD1 and PKD2 genes, and it is characterized by renal cyst formation, inflammation and fibrosis. Forkhead box protein M1 (FoxM1), a transcription factor of the Forkhead box (Fox) protein super family, has been reported to promote tumor formation, inflammation and fibrosis in many organs. However, the role and mechanism of FoxM1 in regulation of ADPKD progression is still poorly understood. Here, we show that FoxM1 is an important regulator of cyst growth in ADPKD. FoxM1 is upregulated in cyst-lining epithelial cells in Pkd1 mutant mouse kidneys and human ADPKD kidneys. FoxM1 promotes cystic renal epithelial cell proliferation by increasing the expression of Akt and Stat3 and the activation of ERK and Rb. FoxM1 also regulates cystic renal epithelial cell apoptosis through NF-κB signaling pathways. In addition, FoxM1 regulates the recruitment and retention of macrophages in Pkd1 mutant mouse kidneys, a process that is associated with FoxM1-mediated upregulation of monocyte chemotactic protein 1. Targeting FoxM1 with its specific inhibitor, FDI-6, delays cyst growth in rapidly progressing and slowly progressing Pkd1 mutant mouse kidneys. This study suggests that FoxM1 is a central and upstream regulator of ADPKD pathogenesis and provides a rationale for targeting FoxM1 as a therapeutic strategy for ADPKD treatment.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Proliferação de Células/genética , Cistos/genética , Cistos/patologia , Fibrose , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Inflamação/patologia , Rim/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Fatores de Transcrição/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
3.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782200

RESUMO

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Camundongos Knockout , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Animais , Humanos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Camundongos , Transdução de Sinais , Modelos Animais de Doenças , Masculino , Progressão da Doença , Rim/patologia , Rim/metabolismo
4.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892227

RESUMO

The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.


Assuntos
Centrossomo , Cílios , Histona-Lisina N-Metiltransferase , Transporte Proteico , Cílios/metabolismo , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Centrossomo/metabolismo , Animais , Flagelos/metabolismo , Camundongos , Proteínas Associadas a Centrossomos
5.
FASEB J ; 36(1): e22089, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34888938

RESUMO

Oxidative stress is emerging as a contributing factor to the homeostasis in cystic diseases. However, the role antioxidant enzymes play in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Peroxiredoxin 5 (Prdx5) is an antioxidant enzyme that catalyzes the reduction of H2 O2 and alkyl hydroperoxide and plays an important role in different biological processes. In this study, we show that Prdx5 is downregulated in a PKD mutant mouse model and ADPKD patient kidneys. Knockdown of Prdx5 resulted in the formation of cysts in a three-dimensional mouse inner medullar collecting duct (IMCD) cell Matrigel culture system. The mechanisms of Prdx5 deficiency mediated cyst growth include: (1) induction of oxidative stress as indicated by increased mRNA expression of heme oxygenase-1, an oxidant stress marker; (2) activation of Erk, S6 and mTORC1, which contribute to cystic renal epithelial cell proliferation and cyst growth; (3) abnormal centrosome amplification and multipolar spindle formation which result in genome instability; (4) upregulation of Polo-like kinase 1 (Plk1) and Aurora kinase A, important mitotic kinases involved in cell proliferation and ciliogenesis; (5) impaired formation of primary cilia in mouse IMCD3 and retinal pigment epithelial cells, which could be rescued by inhibiting Plk1 activity; and (6) restraining the effect of Wnt3a and Wnt5a ligands on primary cilia in mouse IMCD3 cells, while regulating the activity of the canonical and non-canonical Wnt signaling in a separate cilia independent mechanism, respectively. Importantly, we found that targeting Plk1 with its inhibitor, volasertib, delayed cyst growth in Pkd1 conditional knockout mouse kidneys. Together, these findings indicate that Prdx5 is an important antioxidant that regulates cyst growth via diverse mechanisms, in particular, the Prdx5-Plk1 axis, and that induction and activation of Prdx5, alone or together with inhibition of Plk1, represent a promising strategy for combatting ADPKD.


Assuntos
Antioxidantes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cílios/enzimologia , Rim/enzimologia , Peroxirredoxinas/metabolismo , Rim Policístico Autossômico Dominante/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cílios/genética , Estabilidade Enzimática , Humanos , Camundongos , Camundongos Knockout , Estresse Oxidativo , Peroxirredoxinas/genética , Rim Policístico Autossômico Dominante/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
6.
Am J Physiol Renal Physiol ; 323(4): F492-F506, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979967

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Actinas/metabolismo , Animais , Ácidos Carboxílicos/metabolismo , Proliferação de Células , Células Cultivadas , Colforsina/farmacologia , Quinase 4 Dependente de Ciclina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cistos/metabolismo , Família de Proteínas EGF/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Indazóis/metabolismo , Indazóis/farmacologia , Rim/metabolismo , Camundongos , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular
7.
Kidney Int ; 102(3): 577-591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644283

RESUMO

Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked ß-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Rim Policístico Autossômico Dominante , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Peso Corporal , Cílios/patologia , Modelos Animais de Doenças , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/patologia , Túbulos Renais , Camundongos , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
8.
FASEB J ; 35(5): e21533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826787

RESUMO

Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.


Assuntos
Antibacterianos/farmacologia , Cistos/tratamento farmacológico , Modelos Animais de Doenças , Equinomicina/farmacologia , Doenças Renais Policísticas/complicações , Canais de Cátion TRPP/fisiologia , Animais , Cistos/etiologia , Cistos/metabolismo , Cistos/patologia , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886951

RESUMO

Vasopressin type-2 receptor (V2R) is ectopically expressed and plays a pathogenic role in clear cell renal cell carcinoma (ccRCC) tumor cells. Here we examined how V2R signaling within human ccRCC tumor cells (Caki1 cells) stimulates stromal cancer-associated fibroblasts (CAFs). We found that cell culture conditioned media from Caki1 cells increased activation, migration, and proliferation of fibroblasts in vitro, which was inhibited by V2R gene silencing in Caki1 cells. Analysis of the conditioned media and mRNA of the V2R gene silenced and control Caki1 cells showed that V2R regulates the production of CAF-activating factors. Some of these factors were also found to be regulated by YAP in these Caki1 cells. YAP expression colocalized and correlated with V2R expression in ccRCC tumor tissue. V2R gene silencing or V2R antagonist significantly reduced YAP in Caki1 cells. Moreover, the V2R antagonist reduced YAP expression and myofibroblasts in mouse xenograft tumors. These results suggest that V2R plays an important role in secreting pro-fibrotic factors that stimulate fibroblast activation by a YAP-dependent mechanism in ccRCC tumors. Our results demonstrate a novel role for the V2R-YAP axis in the regulation of myofibroblasts in ccRCC and a potential therapeutic target.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Renais , Neoplasias Renais , Receptores de Vasopressinas , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Fibroblastos/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Vasopressinas/genética , Vasopressinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Am Soc Nephrol ; 31(8): 1697-1710, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554753

RESUMO

BACKGROUND: Fibrosis is a major cause of loss of renal function in autosomal dominant polycystic kidney disease (ADPKD). In this study, we examined whether vasopressin type-2 receptor (V2R) activity in cystic epithelial cells can stimulate interstitial myofibroblasts and fibrosis in ADPKD kidneys. METHODS: We treated Pkd1 gene knockout (Pkd1KO) mice with dDAVP, a V2R agonist, for 3 days and evaluated the effect on myofibroblast deposition of extracellular matrix (ECM). We also analyzed the effects of conditioned media from primary cultures of human ADPKD cystic epithelial cells on myofibroblast activation. Because secretion of the profibrotic connective tissue growth factor (CCN2) increased significantly in dDAVP-treated Pkd1KO mouse kidneys, we examined its role in V2R-dependent fibrosis in ADPKD as well as that of yes-associated protein (YAP). RESULTS: V2R stimulation using dDAVP increased the renal interstitial myofibroblast population and ECM deposition. Similarly, conditioned media from human ADPKD cystic epithelial cells increased myofibroblast activation in vitro, suggesting a paracrine mechanism. Renal collecting duct-specific gene deletion of CCN2 significantly reduced cyst growth and myofibroblasts in Pkd1KO mouse kidneys. We found that YAP regulates CCN2, and YAP inhibition or gene deletion reduces renal fibrosis in Pkd1KO mouse kidneys. Importantly, YAP inactivation blocks the dDAVP-induced increase in myofibroblasts in Pkd1KO kidneys. Further in vitro studies showed that V2R regulates YAP by an ERK1/2-dependent mechanism in human ADPKD cystic epithelial cells. CONCLUSIONS: Our results demonstrate a novel mechanism by which cystic epithelial cells stimulate myofibroblasts in the pericystic microenvironment, leading to fibrosis in ADPKD. The V2R-YAP-CCN2 cell signaling pathway may present a potential therapeutic target for fibrosis in ADPKD.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Rim/patologia , Miofibroblastos/fisiologia , Rim Policístico Autossômico Dominante/patologia , Receptores de Vasopressinas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Desamino Arginina Vasopressina/farmacologia , Matriz Extracelular/metabolismo , Fibrose , Humanos , Camundongos , Canais de Cátion TRPP/fisiologia
11.
Hum Mol Genet ; 27(19): 3313-3324, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931260

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of renal cysts that ultimately destroy kidney function. Mutations in the PKD1 and PKD2 genes cause ADPKD. Their protein products, polycystin-1 (PC1) and polycystin-2 (PC2) have been proposed to form a calcium-permeable receptor-channel complex; however the mechanisms by which they function are almost completely unknown. Most mutations in PKD1 are truncating loss-of-function mutations or affect protein biogenesis, trafficking or stability and reveal very little about the intrinsic biochemical properties or cellular functions of PC1. An ADPKD patient mutation (L4132Δ or ΔL), resulting in a single amino acid deletion in a putative G-protein binding region of the PC1 C-terminal cytosolic tail, was found to significantly decrease PC1-stimulated, G-protein-dependent signaling in transient transfection assays. Pkd1ΔL/ΔL mice were embryo-lethal suggesting that ΔL is a functionally null mutation. Kidney-specific Pkd1ΔL/cond mice were born but developed severe, postnatal cystic disease. PC1ΔL protein expression levels and maturation were comparable to those of wild type PC1, and PC1ΔL protein showed cell surface localization. Expression of PC1ΔL and PC2 complexes in transfected CHO cells failed to support PC2 channel activity, suggesting that the role of PC1 is to activate G-protein signaling to regulate the PC1/PC2 calcium channel.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/genética , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Animais , Células CHO , Canais de Cálcio/genética , Cílios/genética , Cílios/patologia , Cricetulus , Humanos , Rim/patologia , Camundongos , Mutação , Rim Policístico Autossômico Dominante/patologia , Domínios Proteicos/genética , Transdução de Sinais
12.
J Am Soc Nephrol ; 29(10): 2482-2492, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30185468

RESUMO

BACKGROUND: The major form of autosomal dominant polycystic kidney disease is caused by heterozygous mutations in PKD1, the gene that encodes polycystin-1 (PC1). Unlike PKD1 genes in the mouse and most other mammals, human PKD1 is unusual in that it contains two long polypyrimidine tracts in introns 21 and 22 (2.5 kbp and 602 bp, respectively; 97% cytosine and thymine). Although these polypyrimidine tracts have been shown to form thermodynamically stable segments of triplex DNA that can cause DNA polymerase stalling and enhance the local mutation rate, the efficiency of transcription and splicing across these cytosine- and thymine-rich introns has been unexplored. METHODS: We used RT-PCR and Western blotting (using an mAb to the N terminus) to probe splicing events over exons 20-24 in the mouse and human PKD1 genes as well as Nanopore sequencing to confirm the presence of multiple splice forms. RESULTS: Analysis of PC1 indicates that humans, but not mice, have a smaller than expected protein product, which we call Trunc_PC1. The findings show that Trunc_PC1 is the protein product of abnormal differential splicing across introns 21 and 22 and that 28.8%-61.5% of PKD1 transcripts terminate early. CONCLUSIONS: The presence of polypyrimidine tracts decreases levels of full-length PKD1 mRNA from normal alleles. In heterozygous individuals, low levels of full-length PC1 may reduce polycystin signaling below a critical "cystogenic" threshold.


Assuntos
Processamento Alternativo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/biossíntese , Canais de Cátion TRPP/genética , Adulto , Animais , Sequência de Bases , Éxons , Feminino , Humanos , Íntrons , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Terminação Traducional da Cadeia Peptídica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Canais de Cátion TRPP/química , Adulto Jovem
15.
J Am Soc Nephrol ; 28(9): 2708-2719, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28522687

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by innumerous fluid-filled cysts and progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is markedly overexpressed by cyst epithelial cells. Periostin promotes cell proliferation, cyst growth, interstitial fibrosis, and the decline in renal function in PKD mice. Here, we investigated the regulation of these processes by the integrin-linked kinase (ILK), a scaffold protein that links the extracellular matrix to the actin cytoskeleton and is stimulated by periostin. Pharmacologic inhibition or shRNA knockdown of ILK prevented periostin-induced Akt/mammalian target of rapamycin (mTOR) signaling and ADPKD cell proliferation in vitro Homozygous deletion of ILK in renal collecting ducts (CD) of Ilkfl/fl ;Pkhd1-Cre mice caused tubule dilations, apoptosis, fibrosis, and organ failure by 10 weeks of age. By contrast, Ilkfl/+ ;Pkhd1-Cre mice had normal renal morphology and function and survived >1 year. Reduced expression of ILK in Pkd1fl/fl ;Pkhd1-Cre mice, a rapidly progressive model of ADPKD, decreased renal Akt/mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis, and significantly improved renal function and animal survival. Additionally, CD-specific knockdown of ILK strikingly reduced renal cystic disease and fibrosis and extended the life of pcy/pcy mice, a slowly progressive PKD model. We conclude that ILK is critical for maintaining the CD epithelium and renal function and is a key intermediate for periostin activation of signaling pathways involved in cyst growth and fibrosis in PKD.


Assuntos
Moléculas de Adesão Celular/metabolismo , Túbulos Renais Coletores/patologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/genética , Proliferação de Células/genética , Dilatação Patológica/genética , Progressão da Doença , Fibrose , Inativação Gênica , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Rim Policístico Autossômico Dominante/fisiopatologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
16.
J Am Soc Nephrol ; 27(4): 1124-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26289612

RESUMO

cAMP stimulates cell proliferation and Cl(-)-dependent fluid secretion, promoting the progressive enlargement of renal cysts in autosomal dominant polycystic kidney disease (ADPKD). Intracellular cAMP levels are determined by the balance of cAMP synthesis by adenylyl cyclases and degradation by phosphodiesterases (PDEs). Therefore, PDE isoform expression and activity strongly influence global and compartmentalized cAMP levels. We report here that PDE3 and PDE4 expression levels are lower in human ADPKD tissue and cells compared with those of normal human kidneys (NHKs), whereas PDE1 levels are not significantly different. Inhibition of PDE4 caused a greater increase in basal and vasopressin (AVP)-stimulated cAMP levels and Cl(-) secretion by ADPKD cells than inhibition of PDE1, and inhibition of PDE4 induced cyst-like dilations in cultured mouse Pkd1(-/-) embryonic kidneys. In contrast, inhibition of PDE1 caused greater stimulation of extracellular signal-regulated kinase (ERK) and proliferation of ADPKD cells than inhibition of PDE4, and inhibition of PDE1 enhanced AVP-induced ERK activation. Notably, inhibition of PDE1, the only family of Ca(2+)-regulated PDEs, also induced a mitogenic response to AVP in NHK cells, similar to the effect of restricting intracellular Ca(2+). PDE1 coimmunoprecipitated with B-Raf and A-kinase anchoring protein 79, and AVP increased this interaction in ADPKD but not NHK cells. These data suggest that whereas PDE4 is the major PDE isoform involved in the regulation of global intracellular cAMP and Cl(-) secretion, PDE1 specifically affects the cAMP signal to the B-Raf/MEK/ERK pathway and regulates AVP-induced proliferation of ADPKD cells.


Assuntos
Proliferação de Células/fisiologia , Líquido Extracelular/metabolismo , Diester Fosfórico Hidrolases/fisiologia , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/fisiopatologia , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Isoenzimas/fisiologia , Camundongos
17.
Hum Mol Genet ; 23(6): 1644-55, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24203696

RESUMO

The mechanisms underlying many of the human disease phenotypes associated with ciliary dysfunction and abnormal centrosome amplification have yet to be fully elucidated. Here, we present for the first time that SIRT2, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, regulates ciliogenesis and centrosome amplification. Overexpression of SIRT2 in renal epithelial cells appeared to disrupt cilia formation, causing decreased numbers of cells with cilia and decreased cilia length, while inhibition of SIRT2 activity by nicotinamide treatment or knockdown of SIRT2 with siRNA was shown to block cilia disassembly during the cell cycle. Overexpression of SIRT2 in zebrafish decreased cilia numbers in Kupffer's vesicle, while morpholino knock down of SIRT2 increased cilia length. Aberrant centrosome amplification and polyploidy were seen with overexpression of SIRT2 in mouse inner medullary collecting duct 3 cells, similar to that observed following Pkd1 knockdown. SIRT2 was up-regulated in both Pkd1 mutant and knockdown cells. Depletion of SIRT2 prevented the abnormal centrosome amplification and polyploidy associated with loss of polycystin-1 (PC1) alone. Thus, we conclude that the aberrant centrosome amplification and polyploidy in Pkd1 mutant or depleted cells was mediated through overexpression of SIRT2. Our results suggest a novel function of SIRT2 in cilia dynamics and centrosome function, and in ciliopathy-associated disease progression.


Assuntos
Centrossomo/patologia , Cílios/metabolismo , Rim/metabolismo , Sirtuína 2/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Linhagem Celular , Cílios/efeitos dos fármacos , Amplificação de Genes , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Camundongos , Niacinamida/farmacologia , Sirtuína 2/genética , Canais de Cátion TRPP/genética , Peixe-Zebra
18.
J Am Soc Nephrol ; 26(9): 2081-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25952256

RESUMO

Polycystic kidney disease (PKD) is one of the most common life-threatening genetic diseases. Jared J. Grantham, M.D., has done more than any other individual to promote PKD research around the world. However, despite decades of investigation there is still no approved therapy for PKD in the United States. In May 2014, the University of Kansas Medical Center hosted a symposium in Kansas City honoring the occasion of Dr. Grantham's retirement and invited all the awardees of the Lillian Jean Kaplan International Prize for Advancement in the Understanding of Polycystic Kidney Disease to participate in a forward-thinking and interactive forum focused on future directions and innovations in PKD research. This article summarizes the contributions of the 12 Kaplan awardees and their vision for the future of PKD research.


Assuntos
Pesquisa Biomédica/tendências , Cílios/genética , Rim Policístico Autossômico Dominante/genética , Transdução de Sinais , Canais de Cátion TRPP/genética , Animais , Cílios/metabolismo , Genes Modificadores , Humanos , Túbulos Renais , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Terapia de Alvo Molecular , Complexos Multiproteicos/metabolismo , Fenótipo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/patologia , Insuficiência Renal/prevenção & controle , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPP/metabolismo
19.
J Cell Biochem ; 116(12): 2903-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26018553

RESUMO

Previously, we showed that Mekk1 translocates to the nucleus, interacts with tumor suppressor protein p53, and co-represses PKD1 transcription via an atypical p53 binding site on the minimal PKD1 promoter (JBC 285:38,818-38,831, 2010). In this study, we report the mechanisms of Mekk1 nuclear transport and p53 binding. Using GFP-linked constitutively active-Mekk1 (CA-Mekk1) and a deletion strategy, we identified a nuclear localization signal (HRDVK) located at amino acid (aa) residues 1,349-1,353 in the C-terminal Mekk1 catalytic domain. Deletion of this sequence in CA-Mekk1 and full-length Mekk1 significantly reduced their nuclear translocation in both HEK293T and COS-1 cells. Using co-immunoprecipitation, we identified an adjacent sequence (GANLID, aa 1,354-1,360) in Mekk1 responsible for p53 binding. Deletion of this sequence markedly reduced the interaction of Mekk1 with p53. Mekk1 does not appear to affect phosphorylation of Ser15, located in the Mdm2 interaction site, or other Ser residues in p53. However, Mekk1 mediates p53 protein stability in the presence of Mdm2 and reduces p53 ubiquitination, suggesting an interference with Mdm2-mediated degradation of p53 by the ubiquitin-proteasome pathway.


Assuntos
MAP Quinase Quinase Quinase 1/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Canais de Cátion TRPP/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , MAP Quinase Quinase Quinase 1/genética , Sinais de Localização Nuclear/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Canais de Cátion TRPP/genética , Proteína Supressora de Tumor p53/genética , Ubiquitinação/genética
20.
J Membr Biol ; 248(6): 1145-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26289599

RESUMO

Cyst enlargement in autosomal dominant polycystic kidney disease (ADPKD) requires the transepithelial secretion of fluid into the cyst lumen. We previously showed that physiological amounts of ouabain enhance cAMP-dependent fluid secretion and cyst growth of human ADPKD cyst epithelial cells in culture and formation of cyst-like dilations in metanephric kidneys from Pkd1 mutant mice. Here, we investigated the mechanisms by which ouabain promotes cAMP-dependent fluid secretion and cystogenesis. Ouabain (3 nM) enhanced cAMP-induced cyst-like dilations in embryonic kidneys from Pkd1 (m1Bei) mice, but had no effect on metanephroi from Pkd1 (m1Bei) mice that lack expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, ouabain stimulation of cAMP-induced fluid secretion and in vitro cyst growth of ADPKD cells were abrogated by CFTR inhibition, showing that CFTR is required for ouabain effects on ADPKD fluid secretion. Moreover, ouabain directly enhanced the cAMP-dependent Cl(-) efflux mediated by CFTR in ADPKD monolayers. Ouabain increased the trafficking of CFTR to the plasma membrane and up-regulated the expression of the CFTR activator PDZK1. Finally, ouabain decreased plasma membrane expression and activity of the Na,K-ATPase in ADPKD cells. Altogether, these results show that ouabain enhances net fluid secretion and cyst formation by activating apical anion secretion via CFTR and decreasing basolateral Na(+) transport via Na,K-ATPase. These results provide new information on the mechanisms by which ouabain affects ADPKD cells and further highlight the importance of ouabain as a non-genomic stimulator of cystogenesis in ADPKD.


Assuntos
Ânions/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ouabaína/farmacologia , Rim Policístico Autossômico Dominante/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Membrana Celular/metabolismo , Cloretos/metabolismo , Colforsina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Rim Policístico Autossômico Dominante/genética , Cultura Primária de Células , Simportadores de Cloreto de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA