Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(4): 816-818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526306

RESUMO

We used pathogen genomics to test orangutan specimens from a museum in Bonn, Germany, to identify the origin of the animals and the circumstances of their death. We found monkeypox virus genomes in the samples and determined that they represent cases from a 1965 outbreak at Rotterdam Zoo in Rotterdam, the Netherlands.


Assuntos
Monkeypox virus , Museus , Animais , Genômica , Surtos de Doenças , Alemanha/epidemiologia
2.
J Clin Microbiol ; 62(3): e0111123, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407068

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections causing significant morbidity and mortality among children and the elderly; two RSV vaccines and a monoclonal antibody have recently been approved. Thus, there is an increasing need for a detailed and continuous genomic surveillance of RSV circulating in resource-rich and resource-limited settings worldwide. However, robust, cost-effective methods for whole genome sequencing of RSV from clinical samples that are amenable to high-throughput are still scarce. We developed Next-RSV-SEQ, an experimental and computational pipeline to generate whole genome sequences of historic and current RSV genotypes by in-solution hybridization capture-based next generation sequencing. We optimized this workflow by automating library preparation and pooling libraries prior to enrichment in order to reduce hands-on time and cost, thereby augmenting scalability. Next-RSV-SEQ yielded near-complete to complete genome sequences for 98% of specimens with Cp values ≤31, at median on-target reads >93%, and mean coverage depths between ~1,000 and >5,000, depending on viral load. Whole genomes were successfully recovered from samples with viral loads as low as 230 copies per microliter RNA. We demonstrate that the method can be expanded to other respiratory viruses like parainfluenza virus and human metapneumovirus. Next-RSV-SEQ produces high-quality RSV genomes directly from culture isolates and, more importantly, clinical specimens of all genotypes in circulation. It is cost-efficient, scalable, and can be extended to other respiratory viruses, thereby opening new perspectives for a future effective and broad genomic surveillance of respiratory viruses. IMPORTANCE: Respiratory syncytial virus (RSV) is a leading cause of severe acute respiratory tract infections in children and the elderly, and its prevention has become an increasing priority. Recently, vaccines and a long-acting monoclonal antibody to protect effectively against severe disease have been approved for the first time. Hence, there is an urgent need for genomic surveillance of RSV at the global scale to monitor virus evolution, especially with an eye toward immune evasion. However, robust, cost-effective methods for RSV whole genome sequencing that are suitable for high-throughput of clinical samples are currently scarce. Therefore, we have developed Next-RSV-SEQ, an experimental and computational pipeline that produces reliably high-quality RSV genomes directly from clinical specimens and isolates.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Humanos , Idoso , Vírus Sincicial Respiratório Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento Completo do Genoma , Anticorpos Monoclonais
3.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367508

RESUMO

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Assuntos
Vírus do Sarampo , Sarampo , Humanos , Vírus do Sarampo/genética , Anticorpos Neutralizantes , Testes de Neutralização , Vacina contra Sarampo/genética , Sarampo/prevenção & controle , Anticorpos Antivirais , Epitopos/genética , Hemaglutininas Virais/genética , Anticorpos Monoclonais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA