Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32217665

RESUMO

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/enzimologia , Mutação , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biossíntese de Proteínas/genética , RNA Ribossômico 18S/metabolismo
2.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37369025

RESUMO

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Camundongos , Animais , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Metabolismo Energético/genética , Fígado/metabolismo
3.
Nat Methods ; 19(7): 803-811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710609

RESUMO

The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.


Assuntos
Arabidopsis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Arabidopsis/genética , Carcinoma Ductal Pancreático/metabolismo , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/genética , Proteoma/análise
4.
PLoS Genet ; 18(5): e1010190, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533204

RESUMO

Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals. We show that loss of MGME1 leads to de novo formation of linear deleted mtDNA fragments that are constantly made and degraded. These findings contradict previous proposal that MGME1 is essential for degradation of linear mtDNA fragments and instead support a model where MGME1 has a critical role in completion of mtDNA replication. We report that Mgme1 knockout mice develop a dramatic phenotype as they age and display progressive weight loss, cataract and retinopathy. Surprisingly, aged animals also develop kidney inflammation, glomerular changes and severe chronic progressive nephropathy, consistent with nephrotic syndrome. These findings link the faulty mtDNA synthesis to severe inflammatory disease and thus show that defective mtDNA replication can trigger an immune response that causes age-associated progressive pathology in the kidney.


Assuntos
Nefropatias , Doenças Mitocondriais , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Rim/metabolismo , Nefropatias/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Mutação
5.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154558

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Assuntos
Estruturas Embrionárias , Fatores de Transcrição Forkhead , Nefropatias , Rim , Néfrons , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Adulto , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla , Rim/anormalidades , Rim/embriologia , Nefropatias/genética , Camundongos Knockout , Néfrons/embriologia , Fatores de Transcrição/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo
6.
Cell ; 137(5): 961-71, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19490899

RESUMO

It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.


Assuntos
Substituição de Aminoácidos , Gânglios da Base/metabolismo , Evolução Biológica , Fatores de Transcrição Forkhead/metabolismo , Vocalização Animal , Animais , Dendritos/metabolismo , Dopamina/metabolismo , Expressão Gênica , Heterozigoto , Humanos , Idioma , Depressão Sináptica de Longo Prazo , Camundongos , Vias Neurais , Plasticidade Neuronal , Fala
7.
Mamm Genome ; 34(2): 244-261, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160609

RESUMO

Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.


Assuntos
Doenças Raras , Camundongos , Animais , Humanos , Camundongos Knockout , Doenças Raras/genética , Técnicas de Inativação de Genes , Fenótipo
8.
Genet Med ; 24(11): 2399-2407, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083289

RESUMO

PURPOSE: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1. METHODS: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing. We established lymphoblastoid cells lines derived from an affected individual and her parents and performed RNA sequencing and functional studies. Rabgap1 knockout mice were generated and phenotyped. RESULTS: We report 5 patients presenting with a common constellation of features, including global developmental delay/intellectual disability, microcephaly, bilateral sensorineural hearing loss, and seizures, as well as overlapping dysmorphic features. Neuroimaging revealed common features, including delayed myelination, white matter volume loss, ventriculomegaly, and thinning of the corpus callosum. Functional analysis of patient cells revealed downregulated mTOR signaling and abnormal localization of early endosomes and lysosomes. Rabgap1 knockout mice exhibited several features in common with the patient cohort, including microcephaly, thinning of the corpus callosum, and ventriculomegaly. CONCLUSION: Collectively, our results provide evidence of a novel neurodevelopmental syndrome caused by biallelic loss-of-function variants in RABGAP1.


Assuntos
Hidrocefalia , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Feminino , Humanos , Microcefalia/genética , Linhagem , Deficiência Intelectual/genética , Síndrome , Camundongos Knockout , Serina-Treonina Quinases TOR , Transtornos do Neurodesenvolvimento/genética
9.
Mamm Genome ; 32(5): 332-349, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34043061

RESUMO

Pathogenic variants in the WDR45 (OMIM: 300,526) gene on chromosome Xp11 are the genetic cause of a rare neurological disorder characterized by increased iron deposition in the basal ganglia. As WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, the disease has been named Beta-Propeller Protein-Associated Neurodegeneration (BPAN). BPAN represents one of the four most common forms of Neurodegeneration with Brain Iron Accumulation (NBIA). In the current study, we generated and characterized a whole-body Wdr45 knock-out (KO) mouse model. The model, developed using TALENs, presents a 20-bp deletion in exon 2 of Wdr45. Homozygous females and hemizygous males are viable, proving that systemic depletion of Wdr45 does not impair viability and male fertility in mice. The in-depth phenotypic characterization of the mouse model revealed neuropathology signs at four months of age, neurodegeneration progressing with ageing, hearing and visual impairment, specific haematological alterations, but no brain iron accumulation. Biochemically, Wdr45 KO mice presented with decreased complex I (CI) activity in the brain, suggesting that mitochondrial dysfunction accompanies Wdr45 deficiency. Overall, the systemic Wdr45 KO described here complements the two mouse models previously reported in the literature (PMIDs: 26,000,824, 31,204,559) and represents an additional robust model to investigate the pathophysiology of BPAN and to test therapeutic strategies for the disease.


Assuntos
Proteínas de Transporte/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Fenótipo
10.
Mamm Genome ; 31(1-2): 30-48, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32060626

RESUMO

The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.


Assuntos
Camundongos Endogâmicos/genética , Fenótipo , Animais , Camundongos de Cruzamento Colaborativo/genética , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética , Genótipo , Masculino , Camundongos , Locos de Características Quantitativas , Especificidade da Espécie
11.
J Inherit Metab Dis ; 42(5): 839-849, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31111503

RESUMO

Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/patologia , Erros Inatos do Metabolismo dos Carboidratos/patologia , Domínio Catalítico/genética , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética , Anemia Hemolítica Congênita não Esferocítica/enzimologia , Animais , Comportamento Animal , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Modelos Animais de Doenças , Estabilidade Enzimática , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Multimerização Proteica
12.
J Biomed Sci ; 24(1): 57, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818080

RESUMO

BACKGROUND: Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU mouse mutagenesis project. The phenotypically dominant mutant line HST014 was established and further analyzed. METHODS: Analysis of the causative mutation as well as the standardized, systemic phenotypic analysis of the mutant line was carried out. RESULTS: The causative mutation was detected in the potassium channel tetramerization domain containing 1 (Kctd1) gene which leads to the amino acid exchange Kctd1 I27N thereby affecting the functional BTB domain of the protein. This line is the first mouse model harboring a Kctd1 mutation. Kctd1 I27N homozygous mutant mice die perinatally. Standardized, systemic phenotypic analysis of Kctd1 I27N heterozygous mutants was carried out in the German Mouse Clinic (GMC). Systematic morphological investigation of the external physical appearance did not detect the specific alterations that are described in KCTD1 mutant human patients affected by the scalp-ear-nipple (SEN) syndrome. The main pathological phenotype of the Kctd1 I27N heterozygous mutant mice consists of kidney dysfunction and secondary effects thereof, without gross additional primary alterations in the other phenotypic parameters analyzed. Genome-wide transcriptome profiling analysis at the age of 4 months revealed about 100 differentially expressed genes (DEGs) in kidneys of Kctd1 I27N heterozygous mutants as compared to wild-type controls. CONCLUSIONS: In summary, the main alteration of the Kctd1 I27N heterozygous mutants consists in kidney dysfunction. Additional analyses in 9-21 week-old heterozygous mutants revealed only few minor effects.


Assuntos
Proteínas Correpressoras/genética , Modelos Animais de Doenças , Nefropatias/genética , Rim/fisiopatologia , Camundongos , Mutação , Animais , Feminino , Masculino , Camundongos Endogâmicos C3H , Fenótipo
13.
J Mol Cell Cardiol ; 99: 57-64, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27539859

RESUMO

A key response of the myocardium to stress is the secretion of factors with paracrine or endocrine function. Intriguing in this respect is peptidase inhibitor 16 (PI16), a member of the CAP family of proteins which we found to be highly upregulated in cardiac disease. Up to this point, the mechanism of action and physiological function of PI16 remained elusive. Here, we show that PI16 is predominantly expressed by cardiac fibroblasts, which expose PI16 to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. Based on a reported genetic association of PI16 and plasma levels of the chemokine chemerin, we investigated whether PI16 regulates post-translational processing of its precursor pro-chemerin. PI16-deficient mice were engineered and found to generate higher levels of processed chemerin than wildtype mice. Purified recombinant PI16 efficiently inhibited cathepsin K, a chemerin-activating protease, in vitro. Moreover, we show that conditioned medium from PI16-overexpressing cells impaired the activation of pro-chemerin. Together, our data indicate that PI16 suppresses chemerin activation in the myocardium and suggest that this circuit may be part of the cardiac stress response.


Assuntos
Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Animais , Catepsina K/metabolismo , Comunicação Celular , Membrana Celular/metabolismo , Quimiocinas/genética , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
14.
Int J Cancer ; 136(10): 2293-303, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25348795

RESUMO

Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.


Assuntos
Neoplasias Cerebelares/patologia , Cerebelo/metabolismo , Meduloblastoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Transdução de Sinais
15.
Am J Pathol ; 183(2): 352-68, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23791841

RESUMO

Within the Munich, Germany, N-ethyl-N-nitrosourea mouse mutagenesis program, we isolated a dominant Jak1 mouse model resembling phenotypic characteristics related to autoimmune disease. Chromosomal sequencing revealed a new Jak1 (p.Ser645Pro) point mutation at the conserved serine of the pseudokinase domain, corresponding to a somatic human mutation (p.Ser646Phe) inducing a constitutive activation of the Janus kinase (JAK)/STAT pathway. Morphologically, all Jak1(S645P+/-) mice showed a progressive structural deterioration of ears starting at the age of 4 months, with mononuclear cell infiltration into the dermis. Female mutant mice, in particular, developed severe skin lesions in the neck from 7 months of age. The IHC analysis of these lesions showed an activation of Stat3 downstream to Jak1(S645P) and elevated tissue levels of IL-6. Histopathological analysis of liver revealed a nodular regenerative hyperplasia. In the spleen, the number of Russell bodies was doubled, correlating with significant increased levels of all immunoglobulin isotypes and anti-DNA antibodies in serum. Older mutant mice developed thrombocytopenia and altered microcytic red blood cell counts. Jak1(S645P+/-) mice showed phenotypes related to impaired bone metabolism as increased carboxy-terminal collagen cross-link-1 levels and alkaline phosphatase activities in plasma, hypophosphatemia, and strongly decreased bone morphometric values. Taken together, Jak1(S645P+/-) mice showed an increased activation of the IL-6-JAK-STAT pathway leading to a systemic lupus erythematosus-like phenotype and offering a new valuable tool to study the role of the JAK/STAT pathway in disease development.


Assuntos
Doenças Autoimunes/genética , Janus Quinase 1/genética , Mutação Puntual/genética , Animais , Doenças Autoimunes/patologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Otopatias/genética , Feminino , Hiperplasia/genética , Hiperplasia/patologia , Hipofosfatemia/genética , Hipofosfatemia/patologia , Interleucina-6/metabolismo , Fígado/patologia , Masculino , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos , Mutagênese/genética , Fenótipo , Fator de Transcrição STAT3/metabolismo , Dermatopatias Genéticas/genética , Baço/patologia , Subpopulações de Linfócitos T , Trombocitopenia/genética
16.
J Cell Sci ; 124(Pt 8): 1245-55, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406566

RESUMO

MIM/MTSS1 is a tissue-specific regulator of plasma membrane dynamics, whose altered expression levels have been linked to cancer metastasis. MIM deforms phosphoinositide-rich membranes through its I-BAR domain and interacts with actin monomers through its WH2 domain. Recent work proposed that MIM also potentiates Sonic hedgehog (Shh)-induced gene expression. Here, we generated MIM mutant mice and found that full-length MIM protein is dispensable for embryonic development. However, MIM-deficient mice displayed a severe urinary concentration defect caused by compromised integrity of kidney epithelia intercellular junctions, which led to bone abnormalities and end-stage renal failure. In cultured kidney epithelial (MDCK) cells, MIM displayed dynamic localization to adherens junctions, where it promoted Arp2/3-mediated actin filament assembly. This activity was dependent on the ability of MIM to interact with both membranes and actin monomers. Furthermore, results from the mouse model and cell culture experiments suggest that full-length MIM is not crucial for Shh signaling, at least during embryogenesis. Collectively, these data demonstrate that MIM modulates interplay between the actin cytoskeleton and plasma membrane to promote the maintenance of intercellular contacts in kidney epithelia.


Assuntos
Actinas/metabolismo , Epitélio/metabolismo , Junções Intercelulares/metabolismo , Rim/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cães , Humanos , Junções Intercelulares/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Ligação Proteica
17.
FASEB J ; 26(11): 4418-28, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22820399

RESUMO

Mutations in the SRGAP3 gene residing on chromosome 3p25 have previously been associated with intellectual disability. Genome-wide association studies have also revealed SRGAP3, together with genes from the same cellular network, as risk genes for schizophrenia. SRGAP3 regulates cytoskeletal dynamics through the RHO protein RAC1. RHO proteins are known to be involved in cytoskeletal reorganization during brain development to control processes such as synaptic plasticity. To elucidate the importance of SRGAP3 in brain development, we generated Srgap3-knockout mice. Ten percent of these mice developed a hydrocephalus and died before adulthood. Surviving mice showed various neuroanatomical changes, including enlarged lateral ventricles, white matter tracts, and dendritic spines together with molecular changes, including an increased basal activity of RAC1. Srgap3(-/-) mice additionally exhibited a complex behavioral phenotype. Behavioral studies revealed an impaired spontaneous alternation and social behavior, while long-term memory was unchanged. The animals also had tics. Lower locomotor activity was observed in male Srgap3(-/-) only. Srgap3(-/-) mice showed increased methylphenidate stimulation in males and an impaired prepulse inhibition in females. Together, the results show neurodevelopmental aberration in Srgap3(-/-) mice, with many of the observed phenotypes matching several schizophrenia-related intermediate phenotypes. Mutations of SRGAP3 may thus contribute to various neurodevelopmental disorders.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Esquizofrenia/genética , Animais , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Proteínas Ativadoras de GTPase/genética , Hidrocefalia/genética , Hidrocefalia/mortalidade , Hidrocefalia/patologia , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Esquizofrenia/metabolismo , Comportamento Social , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
18.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166760, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230398

RESUMO

The alternative oxidase, AOX, provides a by-pass of the cytochrome segment of the mitochondrial respiratory chain when the chain is unavailable. AOX is absent from mammals, but AOX from Ciona intestinalis is benign when expressed in mice. Although non-protonmotive, so does not contribute directly to ATP production, it has been shown to modify and in some cases rescue phenotypes of respiratory-chain disease models. Here we studied the effect of C. intestinalis AOX on mice engineered to express a disease-equivalent mutant of Uqcrh, encoding the hinge subunit of mitochondrial respiratory complex III, which results in a complex metabolic phenotype beginning at 4-5 weeks, rapidly progressing to lethality within a further 6-7 weeks. AOX expression delayed the onset of this phenotype by several weeks, but provided no long-term benefit. We discuss the significance of this finding in light of the known and hypothesized effects of AOX on metabolism, redox homeostasis, oxidative stress and cell signaling. Although not a panacea, the ability of AOX to mitigate disease onset and progression means it could be useful in treatment.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Mitocôndrias , Animais , Camundongos , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Membranas Mitocondriais/metabolismo , Fenótipo , Fatores de Transcrição/metabolismo , Mamíferos/metabolismo
19.
medRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993625

RESUMO

Background: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results: ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions: In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.

20.
J Biol Chem ; 286(21): 18614-22, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21467037

RESUMO

ADAR2, an RNA editing enzyme that converts specific adenosines to inosines in certain pre-mRNAs, often leading to amino acid substitutions in the encoded proteins, is mainly expressed in brain. Of all ADAR2-mediated edits, a single one in the pre-mRNA of the AMPA receptor subunit GluA2 is essential for survival. Hence, early postnatal death of mice lacking ADAR2 is averted when the critical edit is engineered into both GluA2 encoding Gria2 alleles. Adar2(-/-)/Gria2(R/R) mice display normal appearance and life span, but the general phenotypic effects of global lack of ADAR2 have remained unexplored. Here we have employed the Adar2(-/-)/Gria2(R/R) mouse line, and Gria2(R/R) mice as controls, to study the phenotypic consequences of loss of all ADAR2-mediated edits except the critical one in GluA2. Our extended phenotypic analysis covering ∼320 parameters identified significant changes related to absence of ADAR2 in behavior, hearing ability, allergy parameters and transcript profiles of brain.


Assuntos
Adenosina Desaminase/metabolismo , Edição de RNA/fisiologia , Precursores de RNA/metabolismo , Adenosina Desaminase/genética , Animais , Camundongos , Camundongos Knockout , Especificidade de Órgãos/fisiologia , Precursores de RNA/genética , Proteínas de Ligação a RNA , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA