Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Neuron ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38917804

RESUMO

The hippocampus receives sequences of sensory inputs from the cortex during exploration and encodes the sequences with millisecond precision. We developed a predictive autoencoder model of the hippocampus including the trisynaptic and monosynaptic circuits from the entorhinal cortex (EC). CA3 was trained as a self-supervised recurrent neural network to predict its next input. We confirmed that CA3 is predicting ahead by analyzing the spike coupling between simultaneously recorded neurons in the dentate gyrus, CA3, and CA1 of the mouse hippocampus. In the model, CA1 neurons signal prediction errors by comparing CA3 predictions to the next direct EC input. The model exhibits the rapid appearance and slow fading of CA1 place cells and displays replay and phase precession from CA3. The model could be learned in a biologically plausible way with error-encoding neurons. Similarities between the hippocampal and thalamocortical circuits suggest that such computation motif could also underlie self-supervised sequence learning in the cortex.

2.
bioRxiv ; 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36865095

RESUMO

We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were unknown. By studying phages that encode the major phage nucleus protein chimallin, including previously sequenced yet uncharacterized phages, we discovered that chimallin-encoding phages share a set of 72 highly conserved genes encoded within seven distinct gene blocks. Of these, 21 core genes are unique to this group, and all but one of these unique genes encode proteins of unknown function. We propose that phages with this core genome comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryo-electron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication encoded in the core genome are conserved among diverse chimalliviruses, and reveal that non-core components can confer intriguing variations on this replication mechanism. For instance, unlike previously studied nucleus-forming phages, RAY doesn't degrade the host genome, and its PhuZ homolog appears to form a five-stranded filament with a lumen. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.

3.
Cell Rep ; 42(5): 112432, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37120812

RESUMO

We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were still to be determined. Here, we show that phages encoding the major phage nucleus protein chimallin share 72 conserved genes encoded within seven gene blocks. Of these, 21 core genes are unique to nucleus-forming phage, and all but one of these genes encode proteins of unknown function. We propose that these phages comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryoelectron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication are conserved among diverse chimalliviruses and reveal variations on this replication mechanism. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.


Assuntos
Bacteriófagos , Erwinia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Erwinia/genética , Erwinia/metabolismo , Filogenia , Genoma Viral , DNA Viral/genética , DNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA