Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
BMC Genomics ; 24(1): 560, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736708

RESUMO

BACKGROUND: Genomic data-based machine learning tools are promising for real-time surveillance activities performing source attribution of foodborne bacteria such as Listeria monocytogenes. Given the heterogeneity of machine learning practices, our aim was to identify those influencing the source prediction performance of the usual holdout method combined with the repeated k-fold cross-validation method. METHODS: A large collection of 1 100 L. monocytogenes genomes with known sources was built according to several genomic metrics to ensure authenticity and completeness of genomic profiles. Based on these genomic profiles (i.e. 7-locus alleles, core alleles, accessory genes, core SNPs and pan kmers), we developed a versatile workflow assessing prediction performance of different combinations of training dataset splitting (i.e. 50, 60, 70, 80 and 90%), data preprocessing (i.e. with or without near-zero variance removal), and learning models (i.e. BLR, ERT, RF, SGB, SVM and XGB). The performance metrics included accuracy, Cohen's kappa, F1-score, area under the curves from receiver operating characteristic curve, precision recall curve or precision recall gain curve, and execution time. RESULTS: The testing average accuracies from accessory genes and pan kmers were significantly higher than accuracies from core alleles or SNPs. While the accuracies from 70 and 80% of training dataset splitting were not significantly different, those from 80% were significantly higher than the other tested proportions. The near-zero variance removal did not allow to produce results for 7-locus alleles, did not impact significantly the accuracy for core alleles, accessory genes and pan kmers, and decreased significantly accuracy for core SNPs. The SVM and XGB models did not present significant differences in accuracy between each other and reached significantly higher accuracies than BLR, SGB, ERT and RF, in this order of magnitude. However, the SVM model required more computing power than the XGB model, especially for high amount of descriptors such like core SNPs and pan kmers. CONCLUSIONS: In addition to recommendations about machine learning practices for L. monocytogenes source attribution based on genomic data, the present study also provides a freely available workflow to solve other balanced or unbalanced multiclass phenotypes from binary and categorical genomic profiles of other microorganisms without source code modifications.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/genética , Genômica , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina , Alelos
2.
Emerg Infect Dis ; 29(5): 1020-1024, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081588

RESUMO

During November 2021-May 2022, we identified 37 clinical cases of Streptococcus equi subspecies zooepidemicus infections in central Italy. Epidemiologic investigations and whole-genome sequencing showed unpasteurized fresh dairy products were the outbreak source. Early diagnosis by using sequencing technology prevented the spread of life-threatening S. equi subsp. zooepidemicus infections.


Assuntos
Laticínios , Infecções Estreptocócicas , Streptococcus equi , Humanos , Surtos de Doenças , Itália/epidemiologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/diagnóstico , Streptococcus equi/genética
3.
BMC Genomics ; 23(1): 235, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346021

RESUMO

BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. METHODS: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. RESULTS: The isolate's genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. CONCLUSIONS: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X.


Assuntos
Listeria monocytogenes , Genoma Bacteriano , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do Genoma
4.
Emerg Infect Dis ; 28(1): 139-147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932464

RESUMO

Streptococcus suis is a pathogen associated with severe diseases in pigs and humans. Human infections have a zoonotic origin in pigs. To assess circulating strains, we characterized the serotypes, sequence types, and antimicrobial susceptibility of 78 S. suis isolates from diseased farmed pigs in Italy during 2017-2019. Almost 60% of infections were caused by serotypes 1/2 and 9. All but 1 of the serotype 2 and 1/2 isolates were confined to a single cluster, and serotype 9 isolates were distributed along the phylogenetic tree. Besides sequence type (ST) 1, the serotype 2 cluster included ST7, which caused severe human infections in China in 1998 and 2005. A large proportion of serotype 9 isolates, assigned to ST123, were resistant to penicillin. The emergence of this clone threatens the successful treatment of S. suis infection. Characterizing S. suis isolates from pigs will promote earlier detection of emerging clones.


Assuntos
Anti-Infecciosos , Preparações Farmacêuticas , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Filogenia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Suínos , Doenças dos Suínos/epidemiologia
5.
Mol Reprod Dev ; 89(12): 646-654, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36444830

RESUMO

Mitochondrial DNA (mtDNA) plays a crucial role in the development of a competent oocyte. Indeed, mtDNA alterations may predispose to chromosome nondisjunction, resulting in infertility due to a reduced vitality and quality of oocytes and embryos. In this methods paper, the multiple displacement amplification approach was applied in combination with next-generation sequencing (NGS) to amplify and sequence, in single-end, the entire mtDNA of single human oocytes to directly construct genomic NGS libraries, and subsequently, to highlight and quantify the mutations they presented. The bioinformatic workflow was carried out with a specific ad hoc developed in-house software. This approach proved to be sensitive and specific, also highlighting the mutations present in heteroplasmy, showing deletion, insertion or substitution mutations in the genes involved in the respiratory chain, even if the found variants were benign or of uncertain meaning. The analysis of mtDNA mutations in the oocyte could provide a better understanding of specific genetic abnormalities and of their possible effect on oocyte developmental competence. This study shows how this approach, based on a massive parallel sequencing of clonally amplified DNA molecules, allows to sequence the entire mitochondrial genome of single oocytes in a short time and with a single analytical run and to verify mtDNA mutations.


Assuntos
Heteroplasmia , Mitocôndrias , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Oócitos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
BMC Genomics ; 22(1): 782, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717546

RESUMO

BACKGROUND: Faced with the ongoing global pandemic of coronavirus disease, the 'National Reference Centre for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis' (GENPAT) formally established at the 'Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise' (IZSAM) in Teramo (Italy) is in charge of the SARS-CoV-2 surveillance at the genomic scale. In a context of SARS-CoV-2 surveillance requiring correct and fast assessment of epidemiological clusters from substantial amount of samples, the present study proposes an analytical workflow for identifying accurately the PANGO lineages of SARS-CoV-2 samples and building of discriminant minimum spanning trees (MST) bypassing the usual time consuming phylogenomic inferences based on multiple sequence alignment (MSA) and substitution model. RESULTS: GENPAT constituted two collections of SARS-CoV-2 samples. The first collection consisted of SARS-CoV-2 positive swabs collected by IZSAM from the Abruzzo region (Italy), then sequenced by next generation sequencing (NGS) and analyzed in GENPAT (n = 1592), while the second collection included samples from several Italian provinces and retrieved from the reference Global Initiative on Sharing All Influenza Data (GISAID) (n = 17,201). The main results of the present work showed that (i) GENPAT and GISAID detected the same PANGO lineages, (ii) the PANGO lineages B.1.177 (i.e. historical in Italy) and B.1.1.7 (i.e. 'UK variant') are major concerns today in several Italian provinces, and the new MST-based method (iii) clusters most of the PANGO lineages together, (iv) with a higher dicriminatory power than PANGO lineages, (v) and faster that the usual phylogenomic methods based on MSA and substitution model. CONCLUSIONS: The genome sequencing efforts of Italian provinces, combined with a structured national system of NGS data management, provided support for surveillance SARS-CoV-2 in Italy. We propose to build phylogenomic trees of SARS-CoV-2 variants through an accurate, discriminant and fast MST-based method avoiding the typical time consuming steps related to MSA and substitution model-based phylogenomic inference.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Itália , Filogenia , Polimorfismo de Nucleotídeo Único
7.
Emerg Infect Dis ; 27(7): 1981-1984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33979566

RESUMO

We detected severe acute respiratory syndrome coronavirus 2 in an otherwise healthy poodle living with 4 family members who had coronavirus disease. We observed antibodies in serum samples taken from the dog, indicating seroconversion. Full-length genome sequencing showed that the canine and human viruses were identical, suggesting human-to-animal transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cães , Humanos , Itália/epidemiologia
8.
Int J Syst Evol Microbiol ; 70(12): 6115-6125, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33052806

RESUMO

Seven bifidobacterial strains were isolated from the faeces of two adult males of the two-toed sloth (Choloepus didactylus) housed in Parco Natura Viva, in Italy. Comparative sequence analysis of 16S rRNA and of five housekeeping (hsp60, rpoB, clpC, dnaJ, dnaG) genes revealed that these strains were classified into two clusters. On the basis of 16S rRNA gene sequence similarity, the type strain of Bifidobacterium catenulatum subsp. kashiwanohense DSM 21854T (95.4 %) was the closest neighbour to strain in Cluster I (BRDM 6T), whereas the type strain of Bifidobacterium dentium DSM 20436T (values were in the range of 98‒99.8 %) was the closest neighbour to the other six strains in Cluster II. The average nucleotide identity (ANI) values of BRDM 6T and of strains in Cluster II with the closely related type strains were 76.0 and 98.9 % (mean value) respectively. Therefore, genotyping based on the genome sequence of the strain BRDM 6T combined with phenotypic analyses clearly revealed that the strain BRDM 6T represents a novel species for which the names Bifidobacterium choloepi sp. nov. (BRDM 6T=NBRC 114053T=BCRC 81222T) is proposed.


Assuntos
Bifidobacterium/classificação , Filogenia , Bichos-Preguiça/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Genes Bacterianos , Itália , Masculino , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
J Clin Microbiol ; 57(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167846

RESUMO

Quality management and independent assessment of high-throughput sequencing-based virus diagnostics have not yet been established as a mandatory approach for ensuring comparable results. The sensitivity and specificity of viral high-throughput sequence data analysis are highly affected by bioinformatics processing using publicly available and custom tools and databases and thus differ widely between individuals and institutions. Here we present the results of the COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-)emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An artificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13 different European institutes for bioinformatics analysis to identify viral pathogens in high-throughput sequence data. Comparison of the participants' analyses shows that the use of different tools, programs, and databases for bioinformatics analyses can impact the correct identification of viral sequences from a simple data set. The identification of slightly mutated and highly divergent virus genomes has been shown to be most challenging. Furthermore, the interpretation of the results, together with a fictitious case report, by the participants showed that in addition to the bioinformatics analysis, the virological evaluation of the results can be important in clinical settings. External quality assessment and proficiency testing should become an important part of validating high-throughput sequencing-based virus diagnostics and could improve the harmonization, comparability, and reproducibility of results. There is a need for the establishment of international proficiency testing, like that established for conventional laboratory tests such as PCR, for bioinformatics pipelines and the interpretation of such results.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala/normas , Ensaio de Proficiência Laboratorial/estatística & dados numéricos , Análise de Sequência de DNA/normas , Vírus/genética , Análise de Dados , Europa (Continente) , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Colaboração Intersetorial , Ensaio de Proficiência Laboratorial/organização & administração , Reprodutibilidade dos Testes , Análise de Sequência de DNA/estatística & dados numéricos , Vírus/patogenicidade
10.
Int J Syst Evol Microbiol ; 69(8): 2477-2485, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31180316

RESUMO

A novel Bifidobacterium strain, MRM 9.3T, was isolated from a faecal sample of a baby common marmoset (Callithrixjacchus). Cells were Gram-stain-positive, non-motile, non-sporulating, non-haemolytic, facultatively anaerobic and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA genes as well as multilocus sequences (representing hsp60, rpoB, clpC, dnaJ and dnaG genes) and the core genomes revealed that strain MRM 9.3T exhibited phylogenetic relatedness to Bifidobacterium myosotis DSM 100196T. Comparative analysis of 16S rRNA gene sequences confirmed the phylogenetic results showing the highest gene sequence identity with strain B.ifidobacterium myosotis DSM 100196T (95.6 %). The average nucleotide identity, amino acid average identity and in silico DNA-DNA hybridization values between MRM 9.3T and DSM 100196T were 79.9, 72.1 and 28.5 %, respectively. Phenotypic and genotypic features clearly showed that the strain MRM 9.3T represents a novel species, for which the name Bifidobacterium jacchi sp. nov. is proposed. The type strain is MRM 9.3T (=DSM 103362T =JCM 31788T).


Assuntos
Bifidobacterium/classificação , Callithrix/microbiologia , Fezes/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
J Clin Microbiol ; 56(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29925641

RESUMO

The use of whole-genome sequencing (WGS) using next-generation sequencing (NGS) technology has become a widely accepted method for microbiology laboratories in the application of molecular typing for outbreak tracing and genomic epidemiology. Several studies demonstrated the usefulness of WGS data analysis through single-nucleotide polymorphism (SNP) calling from a reference sequence analysis for Brucella melitensis, whereas gene-by-gene comparison through core-genome multilocus sequence typing (cgMLST) has not been explored so far. The current study developed an allele-based cgMLST method and compared its performance to that of the genome-wide SNP approach and the traditional multilocus variable-number tandem repeat analysis (MLVA) on a defined sample collection. The data set was comprised of 37 epidemiologically linked animal cases of brucellosis as well as 71 isolates with unknown epidemiological status, composed of human and animal samples collected in Italy. The cgMLST scheme generated in this study contained 2,704 targets of the B. melitensis 16M reference genome. We established the potential criteria necessary for inclusion of an isolate into a brucellosis outbreak cluster to be ≤6 loci in the cgMLST and ≤7 in WGS SNP analysis. Higher phylogenetic distance resolution was achieved with cgMLST and SNP analysis than with MLVA, particularly for strains belonging to the same lineage, thereby allowing diverse and unrelated genotypes to be identified with greater confidence. The application of a cgMLST scheme to the characterization of B. melitensis strains provided insights into the epidemiology of this pathogen, and it is a candidate to be a benchmark tool for outbreak investigations in human and animal brucellosis.


Assuntos
Brucella melitensis/classificação , Brucella melitensis/genética , Brucelose/epidemiologia , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único/genética , Animais , Brucelose/microbiologia , Surtos de Doenças , Genoma Bacteriano/genética , Genótipo , Humanos , Itália/epidemiologia , Repetições Minissatélites/genética , Epidemiologia Molecular , Filogenia , Sequenciamento Completo do Genoma
12.
Dis Aquat Organ ; 130(3): 209-219, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30259873

RESUMO

The oomycete Aphanomyces astaci is the causative agent of crayfish plague in native European freshwater crayfish. Molecular analyses showed that several distinct genotype groups of this pathogen, apparently associated with different original host taxa, are present in Europe. Tracking their distribution may contribute to understanding the introduction pathways of A. astaci. We used microsatellite markers to genotype the pathogen strains involved in 7 mass mortalities of the endangered indigenous crayfish Austropotamobius pallipes that occurred between 2009 and 2016 in the Abruzzi and Molise regions, central Italy. Three A. astaci genotype groups (A, B, and D, with the latter represented by 2 distinct multilocus genotypes) were identified, suggesting the existence of multiple infection sources even in a relatively small area. Most crayfish plague episodes were due to genotype groups associated with the North American host species Pacifastacus leniusculus and Procambarus clarkii, although these crayfish are not widespread in the study area. A. astaci genotype group A was detected not only in crayfish plague outbreaks but also in apparently healthy Astacus leptodactylus imported for human consumption from Armenia and kept alive in an aquaculture facility. Imports of chronically infected A. leptodactylus from Armenia, Turkey, and possibly Eastern Europe are an underestimated introduction pathway for A. astaci. Although we cannot exclude the presence of latently infected native populations of A. pallipes in the region, A. astaci infections in legally imported crayfish species considered vulnerable to crayfish plague may represent further reservoirs of A. astaci; this should be reflected in the policies regulating the trade of live crayfish.


Assuntos
Aphanomyces , Astacoidea , Animais , Aphanomyces/genética , Astacoidea/microbiologia , Surtos de Doenças/veterinária , Genótipo , Infecções/veterinária , Itália , Turquia
13.
BMC Microbiol ; 17(1): 28, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28152976

RESUMO

BACKGROUND: Brucellosis is a common and chronic disease of cattle and other bovids that often causes reproductive disorders. Natural infection in cattle is caused by Brucella abortus and transmission typically occurs during abortions, calving, or nursing. Brucellosis is also a major zoonotic disease due to contamination of dairy products or contact with the tissues of infected animals. Brucellosis has been eradicated from most of the developed world in the last 40 years but persists in many regions-the disease remains prevalent in portions of Africa, the Middle East, Asia, and Central and South America, as well as in the Mediterranean basin. In Italy, B. abortus has persisted in southern regions in both cattle and water buffalo. Previous attempts at analyzing the phylogenetics of B. abortus in Italy have been challenging due to limited genetic variability and unresolved global population genetic structure of this pathogen. RESULTS: We conducted genome-wide phylogenetic analyses on 11 representative strains of B. abortus from Italy, and compared these sequences to a worldwide collection of publically available genomes. Italian isolates belong to three clades that are basal to the main and global B. abortus lineage. Using six SNP-based assays designed to identify substructure within the Italian clades, we surveyed a collection of 261 isolates and found that one clade predominates throughout endemic districts in the country, while the other two clades are more geographically restricted to portions of southern Italy. CONCLUSIONS: Although related strains exist worldwide, B. abortus isolates from Italy are substantially different than those found in much of the rest of Europe and North America, and are more closely related to strains from the Middle East and Asia. Our assays targeting genetic substructure within Italy allowed us to identify the major lineages quickly and inexpensively, without having to generate whole genome sequences for a large isolate collection. These findings highlight the importance of genetic studies to assess the status and the history of pathogens.


Assuntos
Brucella abortus/classificação , Brucella abortus/genética , Brucella abortus/isolamento & purificação , Brucelose/microbiologia , DNA Bacteriano/genética , Filogenia , África , Animais , Ásia , Brucella abortus/patogenicidade , Brucelose/epidemiologia , Brucelose/veterinária , Búfalos/microbiologia , Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Análise por Conglomerados , Europa (Continente) , Variação Genética , Genótipo , Mapeamento Geográfico , Itália/epidemiologia , Tipagem Molecular/métodos , América do Norte , Zoonoses/epidemiologia , Zoonoses/microbiologia
14.
Euro Surveill ; 21(15)2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27105170

RESUMO

Monophasic variant of Salmonella enterica subspecies enterica serovar Typhimurium (monophasic S. Typhimurium), with antigenic structure 1,4,[5],12:i:-, appears to be of increasing importance in Europe. In Italy, monophasic S. Typhimurium represented the third most frequent Salmonella serovar isolated from human cases between 2004 and 2008. From June 2013 to October 2014, a total of 206 human cases of salmonellosis were identified in Abruzzo region (Central Italy). Obtained clinical isolates characterised showed S. Typhimurium 1,4,[5],12:i:- with sole resistance to nalidixic acid, which had never been observed in Italy in monophasic S. Typhimurium, neither in humans nor in animals or foods. Epidemiological, microbiological and environmental investigations were conducted to try to identify the outbreak source. Cases were interviewed using a standardised questionnaire and microbiological tests were performed on human as well as environmental samples, including samples from fruit and vegetables, pigs, and surface water. Investigation results did not identify the final vehicle of human infection, although a link between the human cases and the contamination of irrigation water channels was suggested.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Vigilância da População , Salmonella typhi/classificação , Salmonella typhi/isolamento & purificação , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Busca de Comunicante , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Distribuição por Sexo , Especificidade da Espécie , Adulto Jovem
15.
Microorganisms ; 12(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674761

RESUMO

Listeria monocytogenes is a ubiquitous pathogen found both in the environment and food. It can cause listeriosis in a wide range of animals as well as in humans. Investigations on presence, spread and virulence are still limited to terrestrial and human environments. Embracing the One Health Approach, investigating the presence and spread of L. monocytogenes in marine ecosystems and among wildlife, would provide us with useful information for human health. This study investigated the presence of L. monocytogenes and Listeria spp. in two species of sea turtles common in the Mediterranean Sea (Caretta caretta and Chelonia mydas). A total of one hundred and sixty-four carcasses of sea turtles (C. caretta n = 161 and C. mydas n = 3) stranded along the Abruzzo, Molise, Campania, and Calabria coasts, were collected. Brain and fecal samples were taken, enriched, and cultured for the detection of Listeria spp. From the specimens collected, strains of L. monocytogenes (brain n = 1, brain and feces n = 1, multiorgan n = 1 and feces n = 1), L. innocua (feces n = 1 and brain n = 1), and L. ivanovii (brain n = 1) were isolated. Typical colonies were isolated for Whole Genome Sequencing (WGS). Virulence genes, disinfectants/metal resistance, and antimicrobial resistance were also investigated. L. monocytogenes, L. innocua, and L. ivanovii were detected in C. caretta, whilst only L. monocytogenes and L. innocua in C. mydas. Notable among the results is the lack of significant differences in gene distribution between human and sea turtle strains. Furthermore, potentially pathogenic strains of L. monocytogenes were found in sea turtles.

16.
Viruses ; 16(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275960

RESUMO

Bovine alphaherpesvirus-1 (BoAHV-1) infection is common in cattle worldwide. However, information on the spread of BoAHV-1-circulating strains in Italy remains limited. In this study, we investigated an outbreak characterized by severe respiratory symptoms in a cattle herd (n = 30) located in Central Italy. BoAHV-1 was isolated from three cattle in a cell culture, which confirmed viral infection. Next, we characterized one (16453/07 TN) of the three isolates of BoAHV-1 using whole-genome sequencing. BLASTn and phylogenetic analysis revealed a nucleotide identity >99% with all BoAHV-1 strains belonging to subtype 1.1, highlighting the genetic stability of the virus. This study reports the first full genomic characterization of a BoAHV-1 isolate in Italy, enriching our understanding of the genetic characteristics of the circulating BoAHV-1 strain in Italy.


Assuntos
Doenças dos Bovinos , Animais , Bovinos , Filogenia , Genômica , Genoma Viral , Surtos de Doenças/veterinária , Itália/epidemiologia
17.
Virus Res ; 344: 199353, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490581

RESUMO

The emergence of SARS-CoV-2 variants has led to several cases among children. However, limited information is available from North African countries. This study describes the SARS-CoV-2 strains circulating in Tunisian pediatric population during successive waves. A total of 447 complete sequences were obtained from individuals aged from 13 days to 18 years, between March 2020 and September 2022: 369 sequences generated during this study and 78 ones, available in GISAID, previously obtained from Tunisian pediatric patients. These sequences were compared with 354 and 274 ones obtained from Tunisian adults and a global dataset, respectively. The variant circulation dynamics of predominant variants were investigated during the study period using maximum-likelihood phylogenetic analysis. Among the studied population, adolescents were the predominant age group, comprising 55.26% of cases. Twenty-three lineages were identified; seven of which were not previously reported in Tunisia. Phylogenetic analysis showed a close relationship between the sequences from Tunisian adults and children. The connections of sequences from other countries were variable according to variants: close relationships were observed for Alpha, B1.160 and Omicron variants, while independent Tunisian clusters were observed for Delta and B.1.177 lineages. These findings highlight the pivotal role of children in virus transmission and underscore the impact of vaccination on virus spread. Vaccination of children, with booster doses, may be considered for better management of future emergences.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2 , Humanos , Tunísia/epidemiologia , COVID-19/virologia , COVID-19/epidemiologia , Criança , SARS-CoV-2/genética , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Pré-Escolar , Lactente , Adolescente , Masculino , Recém-Nascido , Feminino
18.
Dis Aquat Organ ; 103(2): 149-56, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23548365

RESUMO

Crayfish plague, caused by the oomycete Aphanomyces astaci, is a serious disease of European freshwater crayfish and has eliminated entire populations in several European countries. In September 2011, mortality was observed among the Austropotamobius pallipes population of a river basin in the Abruzzi region (central Italy), and A. astaci DNA was detected by PCR in dead crayfish. A systematic survey was carried out to evaluate the spread and the effects of the plague in the river basin. The source of the outbreak remained unknown since North American crayfish species, which frequently act as subclinical carriers of the infection, were not detected in the area. The A. pallipes population disappeared from a river stretch of ~1 km, where A. astaci infection was detected in dead crayfish. However, apparently unaffected crayfish were still present upstream of that area as well as in a tributary that joined the brook in the apparently depopulated stretch. A. astaci infection was not detected in dead individuals collected in the upstream area and tributary. A follow-up visit conducted in the following season showed the presence of A. pallipes in the river stretch hit by the plague. In this outbreak, the spread of the infection could have been limited by a low density of the crayfish population and by the geographic conformation of the river basin, which includes a dense network of small tributaries, characterized by high flow velocity and low water temperature. In this particular setting, crayfish plague outbreaks can remain undetected. This underlines the importance of active monitoring programs aimed at the prompt recognition of both episodes of mortality and the presence of non-indigenous crayfish species.


Assuntos
Astacoidea/parasitologia , Oomicetos/fisiologia , Animais , Interações Hospedeiro-Parasita , Itália , Rios
19.
Front Microbiol ; 14: 1242693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700864

RESUMO

The rapid emergence of carbapenem-resistant Klebsiella pneumoniae (Kp) strains in diverse environmental niches, even outside of the clinical setting, poses a challenge for the detection and the real-time monitoring of novel antimicrobial resistance trends using molecular and whole genome sequencing-based methods. The aim of our study was to understand cryptic resistance determinants responsible for the phenotypic carbapenem resistance observed in strains circulating in Italy by using a combined approach involving whole genome sequencing (WGS) and genome-wide association study (GWAS). In this study, we collected 303 Kp strains from inside and outside clinical settings between 2018-2022 in the Abruzzo region of Italy. The antimicrobial resistance profile of all isolates was assessed using both phenotypic and bioinformatic methods. We identified 11 strains resistant to carbapenems, which did not carry any known genetic determinants explaining their phenotype. The GWAS results showed that incongruent carbapenem-resistant phenotype was associated specifically with strains with two capsular types, KL13 and KL116 including genes involved in the capsule synthesis, encoding proteins involved in the assembly of the capsule biosynthesis apparatus, capsule-specific sugar synthesis, processing and export, polysaccharide pyruvyl transferase, and lipopolysaccharide biosynthesis protein. These preliminary results confirmed the potential of GWAS in identifying genetic variants present in KL13 and KL116 that could be associated with carbapenem resistance traits in Kp. The implementation of advanced methods, such as GWAS with increased antimicrobial resistance surveillance will potentially improve Kp infection treatment and patient outcomes.

20.
Antibiotics (Basel) ; 12(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136693

RESUMO

In the present study, we analyzed the genome of two S. enterica strains TS1 and TS2 from stool and blood cultures, respectively, and one strain of C. freundii TS3, isolated from a single hospitalized patient with acute myeloid leukemia. The S. enterica Goldcoast ST358 (O:8 (C2-C3) serogroup), sequenced by the MiSeq Illumina system, showed the presence of ß-lactamase genes (blaVIM-1, blaSHV-12 and blaOXA-10), aadA1, ant(2″)-Ia, aac(6')-Iaa, aac(6')-Ib3, aac(6')-Ib-cr, qnrVC6, parC(T57S), and several incompatibility plasmids. A wide variety of insertion sequences (ISs) and transposon elements were identified. In C. freundii TS3, these were the blaVIM-1, blaCMY-150, and blaSHV-12, aadA1, aac(6')-Ib3, aac(6')-Ib-cr, mph(A), sul1, dfrA14, ARR-2, qnrVC6, and qnrB38. IncA plasmid isolated from E.coli/K12 transconjugant and C. freundii exhibited a sequence identity >99.9%. The transfer of IncA plasmid was evaluated by conjugation experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA