Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Circulation ; 145(21): 1609-1624, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35437032

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder of desmosomal dysfunction, and PKP2 (plakophilin-2) has been reported to be the most common disease-causing gene when mutation-positive. In the early concealed phase, the ACM heart is at high risk of sudden cardiac death before cardiac remodeling occurs because of mistargeted ion channels and altered Ca2+ handling. However, the results of pathogenic PKP2 variants on myocyte contraction in ACM pathogenesis remain unknown. METHODS: We studied the outcomes of a human truncating variant of PKP2 on myocyte contraction using a novel knock-in mouse model with insertion of thymidine in exon 5 of Pkp2, which mimics a familial case of ACM (PKP2-L404fsX5). We used serial echocardiography, electrocardiography, blood pressure measurements, histology, cardiomyocyte contraction, intracellular calcium measurements, and gene and protein expression studies. RESULTS: Serial echocardiography of Pkp2 heterozygous (Pkp2-Het) mice revealed progressive failure of the right ventricle (RV) in animals older than 3 months. By contrast, left ventricular function remained normal. ECGs of 6-month-old anesthetized Pkp2-Het mice showed normal baseline heart rates and QRS complexes. Cardiac responses to ß-adrenergic agonist isoproterenol (2 mg/kg) plus caffeine (120 mg/kg) were also normal. However, adrenergic stimulation enhanced the susceptibility of Pkp2-Het hearts to tachyarrhythmia and sudden cardiac death. Histological staining showed no significant fibrosis or adipocyte infiltration in the RVs and left ventricles of 6- and 12-month-old Pkp2-Het hearts. Contractility assessment of isolated myocytes demonstrated progressively reduced Pkp2-Het RV cardiomyocyte function consistent with RV failure measured by echocardiography. However, aging Pkp2-Het and control RV myocytes loaded with intracellular Ca2+ indicator Fura-2 showed comparable Ca2+ transients. Western blotting of Pkp2-RV homogenates revealed a 40% decrease in actin, whereas actin immunoprecipitation followed by a 2,4-dinitrophenylhydrazine staining showed doubled oxidation level. This correlated with a 39% increase in troponin-I phosphorylation. In contrast, Pkp2-Het left ventricular myocytes had normal contraction, actin expression and oxidation, and troponin-I phosphorylation. Last, Western blotting of cardiac biopsies revealed that actin expression was 40% decreased in RVs of patients with end-stage ACM. CONCLUSIONS: During the early concealed phase of ACM, reduced actin expression drives loss of RV myocyte contraction, contributing to progressive RV dysfunction.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Actinas , Envelhecimento , Animais , Displasia Arritmogênica Ventricular Direita/patologia , Cardiomiopatias/genética , Morte Súbita Cardíaca , Modelos Animais de Doenças , Humanos , Camundongos , Placofilinas/genética , Troponina I
2.
Circulation ; 133(24): 2348-59, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27169737

RESUMO

BACKGROUND: In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca(2+) dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2(R4496C+/Cx40eGFP)), we tested whether PC intracellular Ca(2+) ([Ca(2+)]i) dysregulation results from a constitutive [Na(+)]i surplus relative to VMs. METHODS AND RESULTS: Simultaneous optical mapping of voltage and [Ca(2+)]i in CPVT hearts showed that spontaneous Ca(2+) release preceded pacing-induced triggered activity at subendocardial PCs. On simultaneous current-clamp and Ca(2+) imaging, early and delayed afterdepolarizations trailed spontaneous Ca(2+) release and were more frequent in CPVT PCs than CPVT VMs. As a result of increased activity of mutant ryanodine receptor type 2 channels, sarcoplasmic reticulum Ca(2+) load, measured by caffeine-induced Ca(2+) transients, was lower in CPVT VMs and PCs than respective controls, and sarcoplasmic reticulum fractional release was greater in both CPVT PCs and VMs than respective controls. [Na(+)]i was higher in both control and CPVT PCs than VMs, whereas the density of the Na(+)/Ca(2+) exchanger current was not different between PCs and VMs. Computer simulations using a PC model predicted that the elevated [Na(+)]i of PCs promoted delayed afterdepolarizations, which were always preceded by spontaneous Ca(2+) release events from hyperactive ryanodine receptor type 2 channels. Increasing [Na(+)]i monotonically increased delayed afterdepolarization frequency. Confocal imaging experiments showed that postpacing Ca(2+) spark frequency was highest in intact CPVT PCs, but such differences were reversed on saponin-induced membrane permeabilization, indicating that differences in [Na(+)]i played a central role. CONCLUSIONS: In CPVT mice, the constitutive [Na(+)]i excess of PCs promotes triggered activity and arrhythmogenesis at lower levels of stress than VMs.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/fisiologia , Sódio/metabolismo , Taquicardia Ventricular/metabolismo , Animais , Sinalização do Cálcio , Humanos , Camundongos , Células de Purkinje
3.
J Mol Cell Cardiol ; 52(6): 1240-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22406428

RESUMO

Ankyrin-B (AnkB) loss-of-function may cause ventricular arrhythmias and sudden cardiac death in humans. Cardiac myocytes from AnkB heterozygous mice (AnkB(+/-)) show reduced expression and altered localization of Na/Ca exchanger (NCX) and Na/K-ATPase (NKA), key players in regulating [Na](i) and [Ca](i). Here we investigate how AnkB reduction affects cardiac [Na](i), [Ca](i) and SR Ca release. We found reduced NCX and NKA transport function but unaltered [Na](i) and diastolic [Ca](i) in myocytes from AnkB(+/-) vs. wild-type (WT) mice. Ca transients, SR Ca content and fractional SR Ca release were larger in AnkB(+/-) myocytes. The frequency of spontaneous, diastolic Ca sparks (CaSpF) was significantly higher in intact myocytes from AnkB(+/-) vs. WT myocytes (with and without isoproterenol), even when normalized for SR Ca load. However, total ryanodine receptor (RyR)-mediated SR Ca leak (tetracaine-sensitive) was not different between groups. Thus, in AnkB(+/-) mice SR Ca leak is biased towards more Ca sparks (vs. smaller release events), suggesting more coordinated openings of RyRs in a cluster. This is due to local cytosolic RyR regulation, rather than intrinsic RyR differences, since CaSpF was similar in saponin-permeabilized myocytes from WT and AnkB(+/-) mice. The more coordinated RyRs openings resulted in an increased propensity of pro-arrhythmic Ca waves in AnkB(+/-) myocytes. In conclusion, AnkB reduction alters cardiac Na and Ca transport and enhances the coupled RyR openings, resulting in more frequent Ca sparks and waves although the total SR Ca leak is unaffected. This could enhance the propensity for triggered arrhythmias in AnkB(+/-) mice.


Assuntos
Anquirinas/metabolismo , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anquirinas/genética , Diástole/fisiologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Circ Res ; 106(11): 1743-52, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20431056

RESUMO

RATIONALE: FK506-binding proteins FKBP12.6 and FKBP12 are associated with cardiac ryanodine receptors (RyR2), and cAMP-dependent protein kinase A (PKA)-dependent phosphorylation of RyR2 was proposed to interrupt FKBP12.6-RyR2 association and activate RyR2. However, the function of FKBP12.6/12 and role of PKA phosphorylation in cardiac myocytes are controversial. OBJECTIVE: To directly measure in situ binding of FKBP12.6/12 to RyR2 in ventricular myocytes, with simultaneous Ca sparks measurements as a RyR2 functional index. METHODS AND RESULTS: We used permeabilized rat and mouse ventricular myocytes, and fluorescently-labeled FKBP12.6/12. Both FKBP12.6 and FKBP12 concentrate at Z-lines, consistent with RyR2 and Ca spark initiation sites. However, only FKBP12.6 inhibits resting RyR2 activity. Assessment of fluorescent FKBP binding in myocyte revealed a high FKBP12.6-RyR2 affinity (K(d)=0.7+/-0.1 nmol/L) and much lower FKBP12-RyR2 affinity (K(d)=206+/-70 nmol/L). Fluorescence recovery after photobleach confirmed this K(d) difference and showed that it is mediated by k(off). RyR2 phosphorylation by PKA did not alter binding kinetics or affinity of FKBP12.6/12 for RyR2. Using quantitative immunoblots, we determined endogenous [FKBP12] in intact myocytes is approximately 1 micromol/L (similar to [RyR]), whereas [FKBP12.6] is

Assuntos
Sinalização do Cálcio , Permeabilidade da Membrana Celular , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Western Blotting , Sinalização do Cálcio/efeitos dos fármacos , Dicroísmo Circular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Ventrículos do Coração/metabolismo , Humanos , Cinética , Camundongos , Camundongos Knockout , Microscopia Confocal , Mutagênese Sítio-Dirigida , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Ligação Proteica , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Sirolimo/farmacologia , Suínos , Proteína 1A de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/genética
5.
J Gen Physiol ; 151(2): 131-145, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30541771

RESUMO

During physical exercise or stress, the sympathetic system stimulates cardiac contractility via ß-adrenergic receptor (ß-AR) activation, resulting in protein kinase A (PKA)-mediated phosphorylation of the cardiac ryanodine receptor RyR2. PKA-dependent "hyperphosphorylation" of the RyR2 channel has been proposed as a major impairment that contributes to progression of heart failure. However, the sites of PKA phosphorylation and their phosphorylation status in cardiac diseases are not well defined. Among the known RyR2 phosphorylation sites, serine 2030 (S2030) remains highly controversial as a site of functional impact. We examined the contribution of RyR2-S2030 to Ca2+ signaling and excitation-contraction coupling (ECC) in a transgenic mouse with an ablated RyR2-S2030 phosphorylation site (RyR2-S2030A+/+). We assessed ECC gain by using whole-cell patch-clamp recordings and confocal Ca2+ imaging during ß-ARs stimulation with isoproterenol (Iso) and consistent SR Ca2+ loading and L-type Ca2+ current (I Ca) triggering. Under these conditions, ECC gain is diminished in mutant compared with WT cardiomyocytes. Resting Ca2+ spark frequency (CaSpF) with Iso is also reduced by mutation of S2030. In permeabilized cells, when SR Ca2+ pump activity is kept constant (using 2D12 antibody against phospholamban), cAMP does not change CaSpF in S2030A+/+ myocytes. Using Ca2+ spark recovery analysis, we found that mutant RyR Ca2+ sensitivity is not enhanced by Iso application, contrary to WT RyRs. Furthermore, ablation of RyR2-S2030 prevents acceleration of Ca2+ waves and increases latency to the first spontaneous Ca2+ release after a train of stimulations during Iso treatment. Together, these results suggest that phosphorylation at S2030 may represent an important step in the modulation of RyR2 activity during ß-adrenergic stimulation and a potential target for the development of new antiarrhythmic drugs.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Serina/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Acoplamento Excitação-Contração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/química
6.
Cardiovasc Res ; 65(4): 793-802, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15721859

RESUMO

Annexins are a family of 13 proteins known to bind phospholipids (PL) in a Ca(2+)-dependent way. They are ubiquitous proteins and share a similar structure characterized by a conserved C-terminal domain with Ca(2+) binding sites and a variable N-terminal domain. Depending on Ca(2+) concentration, they have been reported to participate in a variety of membrane-related events such as exocytosis, endocytosis, apoptosis and binding to cytoskeletal proteins. They have also been reported to regulate protein activities. This review will focus on annexins in the heart, and particularly on annexins A2, A5, A6 and A7. Annexin A2 has been found in endothelial cells and reported to play a central role in control of plasmin-mediated processes. Annexin A5 is mainly localized in cardiomyocytes. However, it could be relocated to interstitial tissue in ischemic and failing hearts or it could be externalized and exhibit a proapoptotic effect in cardiomyocytes. Annexin A6 is the most abundant annexin in the heart, and has been localized in various cell types including myocytes. Overexpression of annexin A6 has underlined physiological alterations in contractile mechanics leading to dilated cardiomyopathy, whereas knockout has been found to induce faster changes in Ca(2+) transient and increased contractility, suggesting a negative inotropic role for annexin A6. Annexin A7 is expressed in heart and skeletal muscle. In annexin A7 null mutant mice decreases in the force-frequency relationship were observed in adult cardiomyocytes, consistent with regulation of Ca(2+) handling. In conclusion, while annexin A2 was involved in regulation of fibrin homeostasis, alterations in expression and activity of annexins A5, A6 and A7 have been associated with regulation of Ca(2+) handling in the heart, but the target of each annexin has not yet been identified.


Assuntos
Anexinas/fisiologia , Cálcio/metabolismo , Miocárdio/metabolismo , Animais , Anexinas/análise , Insuficiência Cardíaca/metabolismo , Humanos , Miócitos Cardíacos/metabolismo
7.
Lancet ; 363(9418): 1365-7, 2004 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-15110495

RESUMO

Experimental data suggest that nitric oxide (NO) generated from neuronal NO synthase (nNOS) modulates the myocardial inotropic state. To assess the contribution of NO, derived from endothelial and neuronal isoforms, to the pathophysiology of congestive heart failure in human beings, we compared expression, localisation, and specific activity of NOS isoforms in myocardium from patients with dilated cardiomyopathy with those in controls who had died from head trauma or intracranial bleeds. Diseased hearts had a significant increase in nNOS mRNA and protein expression, and activity associated with the translocation of nNOS to the sarcolemma through interactions with caveolin 3. Enhanced nNOS activity counteracted a decrease in eNOS expression and activity. Our results provide evidence of increased nNOS-derived NO in the failing human heart. Such altered regulation may be important in the pathophysiology of cardiac dysfunction in human congestive heart failure.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Western Blotting , Cálcio/metabolismo , Caveolina 3 , Caveolinas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Cardiovasc Res ; 64(3): 496-506, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15537503

RESUMO

OBJECTIVE: Annexins are Ca(2+)-dependent phospholipid binding proteins. Externalized annexin A5 has been recently suggested to have a proapoptotic effect. Our aim was to determine whether annexin A5, which is intracellular in cardiomyocytes, could be translocated and/or externalized and play a role during the apoptotic process. METHODS: Apoptosis was induced in rat cardiomyocytes by continuous incubation with staurosporine or 30 min treatment with H(2)O(2) and was measured by phosphatidylserine (PS) externalization, TUNEL staining and DNA ladder. Immunofluorescence labeling of annexin A5 was performed on permeabilized or nonpermeabilized cardiomyocytes. RESULTS: Staurosporine or H(2)O(2) treatment of neonatal cardiomyocytes resulted in significant increases of apoptosis at 24 h, but H(2)O(2) treatment led to a faster and higher PS externalization than that observed with ST. In both neonatal and adult cardiomyocytes, annexin A5 was intracellular in control conditions but was found at the external face of sarcolemma during apoptosis. Furthermore, neonatal cardiomyocytes with externalized annexin A5 have apoptotic characteristics and their number increased with time. Interestingly, immediately after H(2)O(2) induction, the number of annexin A5-positive cells was higher than that of PS-positive cells (p

Assuntos
Anexina A5/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Anexina A5/análise , Anexina A5/imunologia , Anticorpos Monoclonais/farmacologia , Apoptose , Caspase 3 , Caspases/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/farmacologia , Marcação In Situ das Extremidades Cortadas , Microscopia Confocal , Miócitos Cardíacos/patologia , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar , Sarcolema/metabolismo , Estaurosporina/farmacologia
10.
Front Pharmacol ; 5: 101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847270

RESUMO

Ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs) are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca(2+) signals, triggering muscle contraction and oscillatory Ca(2+) waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca(2+) release from sarcoplasmic reticulum (SR), and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca(2+) signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and post-translational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca(2+) leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.

11.
Anesthesiology ; 107(3): 452-60, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17721248

RESUMO

BACKGROUND: In the diabetic heart, the positive inotropic response to beta-adrenoceptor stimulation is altered and beta1 and beta2 adrenoceptors are down-regulated, whereas beta3 adrenoceptor is up-regulated. In heart failure, beta3-adrenoceptor stimulation induces a negative inotropic effect that results from endothelial nitric oxide synthase (NOS3)-derived nitric oxide production. The objective of our study was to investigate the role of beta3-adrenoceptor in diabetic cardiomyopathy. METHODS: beta-Adrenergic responses were investigated in vivo (dobutamine echocardiography) and in vitro (left ventricular papillary muscle) in healthy and streptozotocin-induced diabetic rats. The effect of beta3-adrenoceptor inhibition on the inotropic response was studied in vitro. Immunoblots and NOS activities were performed in heart homogenates (electron paramagnetic resonance) and isolated cardiomyocytes. Data are mean percentage of baseline +/- SD. RESULTS: The impaired positive inotropic effect was confirmed in diabetes both in vivo (121 +/- 15% vs. 160 +/- 16%; P < 0.05) and in vitro (112 +/- 5% vs. 179 +/- 15%; P < 0.05). In healthy rat, the positive inotropic effect was not significantly modified in presence of beta3-adrenoceptor antagonist (174 +/- 20%), nonselective NOS inhibitor (N -nitro-l-arginine methylester [l-NAME]; 183 +/- 19%), or selective NOS1 inhibitor (vinyl-l-N-5-(1-imino-3-butenyl)-l-ornithine [l-VNIO]; 172 +/- 13%). In diabetes, in parallel with the increase in beta3-adrenoceptor protein expression, the positive inotropic effect was partially restored by beta3-adrenoceptor antagonist (137 +/- 8%; P < 0.05), l-NAME (133 +/- 11%; P < 0.05), or l-VNIO (130 +/- 13%; P < 0.05). Nitric oxide was exclusively produced by NOS1 within diabetic cardiomyocytes. NOS2 and NOS3 proteins were undetectable. CONCLUSIONS: beta3-Adrenoceptor is involved in altered positive inotropic response to beta-adrenoceptor stimulation in diabetic cardiomyopathy. This effect is mediated by NOS1-derived nitric oxide in diabetic cardiomyocyte.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Cardiomiopatias/fisiopatologia , Complicações do Diabetes/metabolismo , Contração Miocárdica/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Receptores Adrenérgicos beta/efeitos dos fármacos , Animais , Western Blotting/métodos , Cardiomiopatias/metabolismo , Complicações do Diabetes/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Masculino , Miocárdio/enzimologia , Miócitos Cardíacos/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
12.
J Mol Cell Cardiol ; 40(1): 47-55, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16330044

RESUMO

Annexin A5 is a Ca2+ dependent phosphatidylserine binding protein mainly located in the T-tubules and sarcolemma of cardiomyocytes. Our objectives were to determine whether annexin A5 was associated with various protein(s) and whether such an association was modified in failing (F) hearts. The association between annexin A5 and the cardiac Na+/Ca2+ exchanger (NCX) was demonstrated by immunohistofluorescence, annexin A5-biotin overlay and co-immunoprecipitations (IPs) performed with microsomal preparations (MPs) from non-failing (NF) (n = 8) and F (dilated cardiomyopathy, n = 7) human hearts. We moreover found caveolin-3 in the immunoprecipitates, indicating the presence of multimolecular subsarcolemmal complexes. Surface plasmon resonance assays in NF MPs allowed us to demonstrate direct interaction between the NCX and caveolin-3 and immobilized annexin A5. Interaction was Ca2+-dependent and inhibited by the specific antibody. In addition, dissociation by zwittergent 3-14 (ZW 3-14) of the complexes from MPs increased specific interactions. In F hearts, specific interactions were blunted in native MPs but were fully recovered after treatment with ZW 3-14. In conclusion, we demonstrated that a direct interaction between annexin A5 and the cardiac NCX occurs in complexes including caveolin-3. In F hearts, despite the increase in the exchanger level, almost all of the NCX was involved in complexes. These interactions probably occurred in the intracytoplasmic regulatory loop of the exchanger, suggesting a different regulation of the exchanger in heart failure, consistent with a role in altered Ca2+ handling.


Assuntos
Anexina A5/metabolismo , Caveolina 3/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Western Blotting , Humanos , Imunoprecipitação , Complexos Multiproteicos , Compostos de Amônio Quaternário/química , Valores de Referência , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA