Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pharm Res ; 40(11): 2555-2566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442882

RESUMO

INTRODUCTION: The unbound brain extracelullar fluid (brainECF) to plasma steady state partition coefficient, Kp,uu,BBB, values provide steady-state information on the extent of blood-brain barrier (BBB) transport equilibration, but not on pharmacokinetic (PK) profiles seen by the brain targets. Mouse models are frequently used to study brain PK, but this information cannot directly be used to inform on human brain PK, given the different CNS physiology of mouse and human. Physiologically based PK (PBPK) models are useful to translate PK information across species. AIM: Use the LeiCNS-PK3.0 PBPK model, to predict brain extracellular fluid PK in mice. METHODS: Information on mouse brain physiology was collected from literature. All available connected data on unbound plasma, brainECF PK of 10 drugs (cyclophosphamide, quinidine, erlotonib, phenobarbital, colchicine, ribociclib, topotecan, cefradroxil, prexasertib, and methotrexate) from different mouse strains were used. Dosing regimen dependent plasma PK was modelled, and Kpuu,BBB values were estimated, and provided as input into the LeiCNS-PK3.0 model to result in prediction of PK profiles in brainECF. RESULTS: Overall, the model gave an adequate prediction of the brainECF PK profile for 7 out of the 10 drugs. For 7 drugs, the predicted versus observed brainECF data was within two-fold error limit and the other 2 drugs were within five-fold error limit. CONCLUSION: The current version of the mouse LeiCNS-PK3.0 model seems to reasonably predict available information on brainECF from healthy mice for most drugs. This brings the translation between mouse and human brain PK one step further.


Assuntos
Líquido Extracelular , Modelos Biológicos , Humanos , Barreira Hematoencefálica , Encéfalo , Farmacocinética , Quinidina , Animais , Camundongos
2.
Pediatr Blood Cancer ; 70(11): e30658, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37664968

RESUMO

BACKGROUND: Topotecan, an antitumor drug with systemic exposure (SE)-dependent activity against many pediatric tumors has wide interpatient pharmacokinetic variability, making it challenging to attain the desired topotecan SE. The study objectives were to update our topotecan population pharmacokinetic model, to evaluate the feasibility of determining individual topotecan clearance using a single blood sample, and to apply this approach to topotecan data from a neuroblastoma trial to explore exposure-response relationships. PROCEDURE: Our previous population pharmacokinetic and covariate model was updated using data from 13 clinical pediatric studies. A simulation-based Bayesian analysis was performed to determine if a single blood sample could be sufficient to estimate individual topotecan clearance. Following the Bayesian approach, single pharmacokinetic samples collected from a Children's Oncology Group Phase III clinical trial (ANBL0532; NCT0056767) were analyzed to estimate individual topotecan SE. Associations between topotecan SE and toxicity or early response were then evaluated. RESULTS: The updated population model included the impact of patient body surface area (BSA), age, and renal function on topotecan clearance. The Bayesian analysis with the updated model and single plasma samples showed that individual topotecan clearance values were estimated with good precision (mean absolute prediction error ≤16.2%) and low bias (mean prediction error ≤7.2%). Using the same approach, topotecan SE was derived in patients from ANBL0532. The exposure-response analysis showed an increased early response after concomitant cyclophosphamide and topotecan up to a topotecan SE of 45 h ng/mL. CONCLUSIONS: A simple single-sample approach during topotecan therapy could guide dosing for patients, resulting in more patients reaching target attainment.


Assuntos
Neuroblastoma , Topotecan , Criança , Humanos , Teorema de Bayes , Superfície Corporal , Ciclofosfamida , Neuroblastoma/tratamento farmacológico
3.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080214

RESUMO

IWR-1-endo, a small molecule that potently inhibits the Wnt/ß-catenin signaling pathway by stabilizing the AXIN2 destruction complex, can inhibit drug efflux at the blood−brain barrier. To conduct murine cerebral microdialysis research, validated, sensitive, and reliable liquid chromatography−tandem mass spectrometry (LC-MS/MS) methods were used to determine IWR-1-endo concentration in the murine plasma and brain microdialysate. IWR-1-endo and the internal standard (ISTD) dabrafenib were extracted from murine plasma and microdialysate samples by a simple solid-phase extraction protocol performed on an Oasis HLB µElution plate. Chromatographic separation was executed on a Kinetex C18 (100A, 50 × 2.1 mm, 4 µm particle size) column with a binary gradient of water and acetonitrile, each having 0.1% formic acid, pumped at a flow rate of 0.6 mL/min. Detection by mass spectrometry was conducted in the positive selected reaction monitoring ion mode by monitoring mass transitions 410.40 > 344.10 (IWR-1-endo) and 520.40 > 307.20 (ISTD). The validated curve range of IWR-1-endo was 5−1000 ng/mL for the murine plasma method (r2 ≥ 0.99) and 0.5−500 ng/mL for the microdialysate method (r2 ≥ 0.99). The lower limit of quantification (LLOQ) was 5 ng/mL and 0.5 ng/mL for the murine plasma and microdialysate sample analysis method, respectively. Negligible matrix effects were observed in murine plasma and microdialysate samples. IWR-1-endo was extremely unstable in murine plasma. To improve the stability of IWR-1-endo, pH adjustments of 1.5 were introduced to murine plasma and microdialysate samples before sample storage and processing. With pH adjustment of 1.5 to the murine plasma and microdialysate samples, IWR-1-endo was stable across several tested conditions such as benchtop, autosampler, freeze−thaw, and long term at −80 °C. The LC-MS/MS methods were successfully applied to a murine pharmacokinetic and cerebral microdialysis study to characterize the unbound IWR-1-endo exposure in brain extracellular fluid and plasma.


Assuntos
Espectrometria de Massas em Tandem , Via de Sinalização Wnt , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Camundongos , Microdiálise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
4.
Pediatr Blood Cancer ; 68(4): e28879, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33405376

RESUMO

BACKGROUND: Disruption of cell-cycle regulators is a potential therapeutic target for brain tumors in children and adolescents. The aim of this study was to determine the maximum tolerated dose (MTD) and describe toxicities related to palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor in pediatric patients with progressive/refractory brain tumors with intact retinoblastoma protein. METHODS: Palbociclib was administered orally starting at 50 mg/m2 daily for the first 21 days of a 28-day course. Dose escalation was according to the Rolling-6 statistical design in less heavily (stratum I) and heavily pretreated (stratum II) patients, and MTD was determined separately for each group. Pharmacokinetic studies were performed during the first course, and pharmacodynamic studies were conducted to evaluate relationships between drug levels and toxicities. RESULTS: A total of 21 patients were enrolled on stratum I and 14 patients on stratum II. The MTD for both strata was 75 mg/m2 . Palbociclib absorption (mean Tmax between 4.9 and 6.6 h) and elimination (mean half-life between 11.3 and 19.5 h) were assessed. The most common toxicity was myelosuppression. Higher palbociclib exposure was associated with grade 3/4 neutropenia and leukopenia. Dose limiting toxicities included grade 4 neutropenia and grade 3 thrombocytopenia and dehydration. No patients had an objective response to palbociclib therapy. CONCLUSIONS: Palbociclib was safely administered to children and adolescents at a dosage of 75 mg/m2 for 21 consecutive days followed by seven days of rest in both strata. Future studies will establish its optimal utilization in pediatric patients with brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Adolescente , Adulto , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Progressão da Doença , Feminino , Humanos , Masculino , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Piridinas/efeitos adversos , Piridinas/farmacocinética , Adulto Jovem
5.
Cancer ; 126(8): 1749-1757, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31967673

RESUMO

BACKGROUND: The prognosis for children with recurrent solid tumors generally is poor. Targeting mammalian target of rapamycin (mTOR) and vascular endothelial growth factor A with everolimus and bevacizumab, respectively, synergistically improves progression-free survival and is well tolerated in adults with solid tumors. METHODS: In the current phase 1 study, a total of 15 children with recurrent or refractory solid tumors were treated with bevacizumab and everolimus to establish the maximum tolerated dose, toxicity, and preliminary antitumor response (ClinicalTrials.gov identifier NCT00756340). The authors also evaluated everolimus-mediated inhibition of the mTOR pathway in the peripheral blood mononuclear cells of treated patients. RESULTS: Tumors predominantly were soft tissue and/or bone sarcomas (8 cases) and brain tumors (5 cases). The first 2 patients enrolled at dose level 1 (10 mg/kg of bevacizumab and 4 mg/m2 of everolimus) experienced dose-limiting toxicities (DLTs). The next 5 patients were enrolled at dose level 0 (8 mg/kg of bevacizumab and 4 mg/m2 of everolimus), and DLTs occurred in 2 patients. The authors then modified the protocol to permit expansion of dose 0, and 8 additional patients were added, with no DLTs reported. Of all the patients, stable disease occurred in 4 patients (30.8%; median, 2 courses), and progressive disease occurred in 9 patients (69.2%). Overall survival was 0.59 years (95% CI, 0.24-1.05 years). The mTOR biomarker phospho-4EBP1 Thr/37/46 significantly decreased from baseline to day 27 in peripheral blood mononuclear cells (P = .045). Phospho-AKT levels also decreased from those at baseline. CONCLUSIONS: The maximum tolerated dose of cotreatment with bevacizumab and everolimus was 8 mg/kg of bevacizumab and 4 mg/m2 of everolimus in a 4-week cycle for children with recurrent solid tumors.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Everolimo/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Prognóstico , Intervalo Livre de Progressão
6.
Br J Clin Pharmacol ; 86(2): 362-371, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31657864

RESUMO

AIMS: No population pharmacokinetic studies of high-dose methotrexate (HDMTX) have been conducted in infants with brain tumours, which are a vulnerable population. The aim of this study was to evaluate HDMTX disposition in these children to provide a rational basis for MTX dosing. METHODS: Patients received 4 monthly courses of HDMTX (5 g/m2 or 2.5 g/m2 for infants aged ≤31 days) as a 24-h infusion. Serial samples were analysed for MTX by an enzyme immunoassay method. Pharmacokinetic parameters were estimated using nonlinear mixed effects population modelling. Demographics, concomitant medications and genetic polymorphisms were considered as pharmacokinetic covariates while MTX exposure and patient age were considered as covariates for Grade 3 and 4 toxicities. RESULTS: The population pharmacokinetics of HDMTX were estimated in 178 patients (age range 0.02-4.7 years) in 648 courses. The population clearance and volume were 90 mL/min/m2 and 14.4 L/m2 , respectively. Significant covariates on body surface area adjusted MTX clearance included estimated glomerular filtration rate and co-treatment with dexamethasone or vancomycin. No significant association was observed between MTX toxicity and MTX exposure, patient age, leucovorin dosage or duration. MTX clearance in infants ≤31 days at enrolment was 44% lower than in older infants, but their incidence of toxicity was not higher since they also received a lower MTX dosage. CONCLUSIONS: By aggressively following institutional clinical guidelines, HDMTX-related toxicities were low, and using covariates from the population pharmacokinetic model enabled the calculation of a rational dosage for this patient population for future clinical trials.


Assuntos
Neoplasias Encefálicas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Idoso , Antimetabólitos Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/tratamento farmacológico , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Leucovorina , Metotrexato
7.
Biomed Chromatogr ; 34(1): e4697, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31495945

RESUMO

A liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed and validated to measure GDC-0084 in human plasma and cerebrospinal fluid (CSF). Reverse-phase chromatography with gradient elution was performed using a C18 column (50 × 2.0 mm, 3 µm). Solid-phase extraction of plasma and CSF was employed to give excellent recovery. MS detection was performed with positive ion screening in multiple reaction monitoring mode. The precursor to the product ions (Q1 → Q3) selected for GDC-0084 and GDC-0084-d6 were 383.2 → 353.2 and 389.2 → 353.2, respectively. A separate calibration curve was established for human plasma and CSF. Both calibration curves, ranging from 0.2 to 200 ng/mL, were linear and had acceptable intra- and inter-day precision and accuracy. The lower limit of quantitation and limit of detection for GDC-0084 in human plasma were 0.2 ng/mL (signal/noise ≥47) and 0.005 ng/mL (signal/noise ≥3.5), respectively, and for GDC-0084 in human CSF were 0.2 ng/mL (signal/noise ≥19.7) and 0.04 ng/mL (signal/noise ≥7.2). This method was successfully applied to analyze serial plasma samples obtained from children with diffuse intrinsic pontine gliomas and other midline gliomas who participated in pharmacokinetic studies as part of a phase I clinical trial of GDC-0084.


Assuntos
Cromatografia Líquida/métodos , Oxazinas/sangue , Oxazinas/líquido cefalorraquidiano , Pirimidinas/sangue , Pirimidinas/líquido cefalorraquidiano , Espectrometria de Massas em Tandem/métodos , Criança , Estabilidade de Medicamentos , Humanos , Limite de Detecção , Modelos Lineares , Oxazinas/química , Oxazinas/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
Br J Clin Pharmacol ; 85(3): 516-529, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30414331

RESUMO

AIMS: Tacrolimus has been associated with notable extrarenal adverse effects (AEs), which are unpredictable and impact patient morbidity. The association between model-predicted tacrolimus exposure metrics and standardized extrarenal AEs in stable renal transplant recipients was investigated and a limited sampling strategy (LSS) was developed to predict steady-state tacrolimus area under the curve over a 12-h dosing period (AUCss,0-12h ). METHODS: All recipients receiving tacrolimus and mycophenolic acid ≥6 months completed a 12-h cross-sectional observational pharmacokinetic-pharmacodynamic study. Patients were evaluated for the presence of individual and composite gastrointestinal, neurological, and aesthetic AEs during the study visit. The associations between AEs and tacrolimus exposure metrics generated from a published population pharmacokinetic model were investigated using a logistic regression analysis in NONMEM 7.3. An LSS was determined using a Bayesian estimation method with the same patients. RESULTS: Dose-normalized tacrolimus AUCss,0-12h and apparent clearance were independently associated with diarrhoea, dyspepsia, insomnia and neurological AE ratio. Dose-normalized tacrolimus maximum concentration was significantly correlated with skin changes and acne. No AE associations were found with trough concentrations. Using limited sampling at 0, 2h; 0, 1, 4h; and 0, 1, 2, 4h provided a precise and unbiased prediction of tacrolimus AUC (root mean squared prediction error < 10%), which was not well characterized using trough concentrations only (root mean squared prediction error >15%). CONCLUSIONS: Several AEs (i.e. diarrhoea, dyspepsia, insomnia and neurological AE ratio) were associated with tacrolimus dose normalized AUCss,0-12h and clearance. Skin changes and acne were associated with dose-normalized maximum concentrations. To facilitate clinical implementation, a LSS was developed to predict AUCss,0-12h values using sparse patient data to efficiently assess projected immunosuppressive exposure and potentially minimize AE manifestations.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Imunossupressores/efeitos adversos , Transplante de Rim/efeitos adversos , Modelos Biológicos , Tacrolimo/efeitos adversos , Administração Oral , Adulto , Idoso , Área Sob a Curva , Estudos Transversais , Relação Dose-Resposta a Droga , Quimioterapia Combinada/efeitos adversos , Quimioterapia Combinada/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/farmacocinética , Incidência , Masculino , Pessoa de Meia-Idade , Ácido Micofenólico/administração & dosagem , Ácido Micofenólico/efeitos adversos , Ácido Micofenólico/farmacocinética , Tacrolimo/administração & dosagem , Tacrolimo/farmacocinética , Transplantados/estatística & dados numéricos , Adulto Jovem
10.
J Pharm Pharm Sci ; 22(1): 612-629, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815662

RESUMO

PURPOSE: Cyclophosphamide is widely used to treat children with medulloblastoma; however, little is known about its brain penetration. We performed cerebral microdialysis to characterize the brain penetration of cyclophosphamide (130 mg/kg, IP) and its metabolites [4-hydroxy-cyclophosphamide (4OH-CTX) and carboxyethylphosphoramide mustard (CEPM)] in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. METHODS: A plasma pharmacokinetic study was performed in non-tumor-bearing CD1- nude mice, and four cerebral microdialysis studies were performed in non-tumor-bearing (M1 and M3) and tumor- bearing mice (M2 and M4). Plasma samples were collected up to 6-hours post-dose, and extracellular fluid (ECF) samples were collected over 60-minute intervals for 24-hours post-dose. To stabilize and quantify 4OH-CTX, a derivatizing solution was added in blood after collection, and either directly in the microdialysis perfusate (M1 and M2) or in ECF collection tubes (M3 and M4). Plasma/ECF cyclophosphamide and CEPM, and 4OH-CTX concentrations were separately measured using different LC-MS/MS methods. RESULTS: All plasma/ECF concentrations were described using a population-based pharmacokinetic model. Plasma exposures of cyclophosphamide, 4OH-CTX, and CEPM were similar across studies (mean AUC=112.6, 45.6, and 80.8 µmol∙hr/L). Hemorrhage was observed in brain tissue when the derivatizing solution was in perfusate compared with none when in collection tubes, which suggested potential sample contamination in studies M1 and M2. Model-derived unbound ECF to plasma partition coefficients (Kp,uu) were calculated to reflect CNS penetration of the compounds. Lower cyclophosphamide Kp,uu was obtained in tumor-bearing mice versus non-tumor bearing mice (mean 0.15 versus 0.22, p=0.019). No differences in Kp,uu were observed between these groups for 4OH- CTX and CEPM (overall mean 0.10 and 0.07). CONCLUSIONS: Future studies will explore potential mechanisms at the brain-tumor barrier to explain lower cyclophosphamide brain penetration in tumor-bearing mice. These results will be used to further investigate exposure-response relationships in medulloblastoma xenograft models.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Ciclofosfamida/farmacologia , Meduloblastoma/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/sangue , Sistema Nervoso Central/metabolismo , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Cromatografia Líquida , Ciclofosfamida/administração & dosagem , Ciclofosfamida/sangue , Relação Dose-Resposta a Droga , Feminino , Injeções Intraperitoneais , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Nus , Espectrometria de Massas em Tandem
11.
Clin Transl Sci ; 17(4): e13776, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38545863

RESUMO

A quantitatively-driven evaluation of existing clinical data and associated knowledge to accelerate drug discovery and development is a highly valuable approach across therapeutic areas, but remains underutilized. This is especially the case for rare diseases for which development is particularly challenging. The current work outlines an organizational framework to support a quantitatively-based reverse translation approach to clinical development. This approach was applied to characterize predictors of the trajectory of cognition in Hunter syndrome (Mucopolysaccharidosis Type II; MPS-II), a rare X-linked lysosomal storage disorder, highly heterogeneous in its course. Specifically, we considered ways to refine target populations based on age, cognitive status, and biomarkers, that is, cerebrospinal fluid glycosaminoglycans (GAG), at trial entry. Data from a total of 138 subjects (age range 2.5 to 10.1 years) from Takeda-sponsored internal studies and external natural history studies in MPS-II were included. Quantitative analyses using mixed-effects models were performed to characterize the relationships between neurocognitive outcomes and potential indicators of disease progression. Results revealed a specific trajectory in cognitive development across age with an initial progressive phase, followed by a plateau between 4 and 8 years and then a variable declining phase. Additionally, results suggest a faster decline in cognition among subjects with lower cognitive scores or with higher cerebrospinal fluid GAG at enrollment. These results support differences in the neurocognitive course of MPS-II between distinct groups of patients based on age, cognitive function, and biomarker status at enrollment. These differences should be considered when designing future clinical trials.


Assuntos
Mucopolissacaridose II , Criança , Pré-Escolar , Humanos , Biomarcadores , Progressão da Doença , Glicosaminoglicanos , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/tratamento farmacológico
12.
Eur J Pharm Sci ; 193: 106669, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070781

RESUMO

PURPOSE: The objectives of this study were to develop a population pharmacokinetic model of methotrexate (MTX) and its primary metabolite 7-hydroxymethotrexate (7OHMTX) in children with brain tumors, to identify the sources of pharmacokinetic variability, and to assess whether MTX and 7OHMTX systemic exposures were related to toxicity. METHODS: Patients received 2.5 or 5 g/m2 MTX as a 24-hour infusion and serial samples were analyzed for MTX and 7OHMTX by an LC-MS/MS method. Pharmacokinetic parameters were estimated using nonlinear mixed-effects modeling. Demographics, laboratory values, and genetic polymorphisms were considered as potential covariates to explain the pharmacokinetic variability. Association between MTX and 7OHMTX systemic exposures and MTX-related toxicities were explored using random intercept logistic regression models. RESULTS: The population pharmacokinetics of MTX and 7OHMTX were adequately characterized using two-compartment models in 142 patients (median 1.91 y; age range 0.09 to 4.94 y) in 513 courses. The MTX and 7OHMTX population clearance values were 4.6 and 3.0 l/h/m2, respectively. Baseline body surface area and estimated glomerular filtration rate were significant covariates on both MTX and 7OHMTX plasma disposition. Pharmacogenetic genotypes were associated with MTX pharmacokinetic parameters but had only modest influence. No significant association was observed between MTX or 7OHMTX exposure and MTX-related toxicity. CONCLUSIONS: MTX and 7OHMTX plasma disposition were characterized for the first time in young children with brain tumors. No exposure-toxicity relationship was identified in this study, presumably due to aggressive clinical management which led to a low MTX-related toxicity rate.


Assuntos
Neoplasias Encefálicas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Criança , Lactente , Humanos , Pré-Escolar , Metotrexato/farmacocinética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Encefálicas/tratamento farmacológico
13.
Drug Metab Pharmacokinet ; 48: 100471, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669926

RESUMO

The brain penetration of methotrexate (MTX) and its metabolite 7-hydroxymethotrexate (7OHMTX) was characterized in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. Plasma pharmacokinetic studies and cerebral and ventricular microdialysis studies were performed in animals dosed with 200 or 1000 mg/kg MTX by IV bolus. Plasma, brain/tumor extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF) MTX and 7OHMTX concentration-time data were analyzed by validated LC-MS/MS methods and modeled using a population-based pharmacokinetic approach and a hybrid physiologically-based model structure for the brain compartments. Brain penetration was similar for MTX and 7OHMTX and was not significantly different between non-tumor and tumor bearing mice. Overall, mean (±SD) model-derived unbound plasma to ECF partition coefficient Kp,uu were 0.17 (0.09) and 0.17 (0.12) for MTX and 7OHMTX, respectively. Unbound plasma to CSF Kp,uu were 0.11 (0.06) and 0.18 (0.09) for MTX and 7OHMTX, respectively. The plasma and brain model were scaled to children using allometric principles and pediatric physiological parameters. Model-based simulations were adequately overlaid with digitized plasma and CSF lumbar data collected in children receiving different MTX systemic infusions. This model can be used to further explore and optimize methotrexate dosing regimens in children with brain tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Camundongos , Animais , Meduloblastoma/metabolismo , Metotrexato , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
14.
Clin Pharmacol Ther ; 114(3): 515-529, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313953

RESUMO

The promise of viral vector-based gene therapy (GT) as a transformative paradigm for treating severely debilitating and life-threatening diseases is slowly coming to fruition with the recent approval of several drug products. However, they have a unique mechanism of action often necessitating a tortuous clinical development plan. Expertise in such complex therapeutic modality is still fairly limited in this emerging class of adeno-associated virus (AAV) vector-based gene therapies. Because of the irreversible mode of action and incomplete understanding of genotype-phenotype relationship and disease progression in rare diseases careful considerations should be given to GT product's benefit-risk profile. In particular, special attention needs to be paid to safe dose selection, reliable dose exposure response (including clinically relevant endpoints), or creative approaches in study design targeting small patient populations during clinical development. We believe that quantitative tools encompassed within model-informed drug development (MIDD) framework fits quite well in the development of such novel therapies, as they enable us to benefit from the totality of data approach in order to support dose selection as well as optimize clinical trial designs, end point selection, and patient enrichment. In this thought leadership paper, we provide our collective experiences, identify challenges, and suggest areas of improvement in applications of modeling and innovative trial design in development of AAV-based GT products and reflect on the challenges and opportunities for incorporating MIDD tools and more in rational development of these products.


Assuntos
Terapia Genética , Projetos de Pesquisa , Ensaios Clínicos como Assunto , Terapia Genética/efeitos adversos
15.
Neuro Oncol ; 25(2): 386-397, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35652336

RESUMO

BACKGROUND: Recurrent atypical teratoid/rhabdoid tumor (AT/RT) is, most often, a fatal pediatric malignancy with limited curative options. METHODS: We conducted a phase II study of Aurora kinase A inhibitor alisertib in patients aged <22 years with recurrent AT/RT. Patients received alisertib once daily (80 mg/m2 as enteric-coated tablets or 60 mg/m2 as liquid formulation) on Days 1-7 of a 21-day cycle until progressive disease (PD) occurred. Alisertib plasma concentrations were measured in cycle 1 on Days 1 (single dose) and 7 (steady state) and analyzed with noncompartmental pharmacokinetics. Trial efficacy end point was ≥10 participants with stable disease (SD) or better at 12 weeks. RESULTS: SD (n = 8) and partial response (PR) (n = 1) were observed among 30 evaluable patients. Progression-free survival (PFS) was 30.0% ± 7.9% at 6 months and 13.3% ± 5.6% at 1 year. One-year overall survival (OS) was 36.7% ± 8.4%. Two patients continued treatment for >12 months. PFS did not differ by AT/RT molecular groups. Neutropenia was the most common adverse effect (n = 23/30, 77%). The 22 patients who received liquid formulation had a higher mean maximum concentration (Cmax) of 10.1 ± 3.0 µM and faster time to Cmax (Tmax = 1.2 ± 0.7 h) than those who received tablets (Cmax = 5.7 ± 2.4 µM, Tmax = 3.4 ± 1.4 h). CONCLUSIONS: Although the study did not meet predetermined efficacy end point, single-agent alisertib was well tolerated by children with recurrent AT/RT, and SD or PR was observed in approximately a third of the patients.


Assuntos
Antineoplásicos , Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Criança , Humanos , Antineoplásicos/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Azepinas/uso terapêutico , Pirimidinas/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Aurora Quinase A , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos
16.
Cancer Chemother Pharmacol ; 89(4): 459-468, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212779

RESUMO

PURPOSE: Crenolanib, an oral inhibitor of platelet-derived growth factor receptor, was evaluated to treat children and young adults with brain tumors. Crenolanib population pharmacokinetics and covariate influence were characterized in this patient population. METHODS: Patients enrolled on this phase I study (NCT01393912) received oral crenolanib once daily. Serial single-dose and steady-state serum pharmacokinetic samples were collected and analyzed using a validated LC-ESI-MS/MS method. Population modeling and covariate analysis evaluating demographics, laboratory values, and comedications were performed. The impact of significant covariates on crenolanib exposure was further explored using model simulations. RESULTS: Crenolanib serum concentrations were analyzed for 55 patients (2.1-19.2 years-old) and best fitted with a linear two-compartment model, with delayed absorption modeled with a lag time. A typical patient [8-year-old, body surface area (BSA) 1 m2] had an apparent central clearance, volume, and absorption rate of 41 L/h, 54.3 L, and 0.19 /h, respectively. Patients taking acid reducers (histamine H2 antagonists or proton pump inhibitors) concomitantly exhibited about 2- and 1.7-fold lower clearance and volume (p < 0.0001 and p = 0.018, respectively). Crenolanib clearance increased with BSA (p < 0.0001), and absorption rate decreased with age (p < 0.0001). Model simulations showed cotreatment with an acid reducer was the only covariate significantly altering crenolanib exposure and supported the use of BSA-based crenolanib dosages vs flat-dosages for this population. CONCLUSIONS: Crenolanib pharmacokinetics were adequately characterized in children and young adults with brain tumors. Despite marked increased drug exposure with acid reducer cotreatment, crenolanib therapy was well tolerated. No dosing adjustments are recommended for this population.


Assuntos
Neoplasias Encefálicas , Espectrometria de Massas em Tandem , Adolescente , Adulto , Benzimidazóis , Neoplasias Encefálicas/tratamento farmacológico , Criança , Pré-Escolar , Humanos , Modelos Biológicos , Piperidinas , Adulto Jovem
17.
Mol Cancer Ther ; 21(8): 1306-1317, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35709750

RESUMO

Group3 (G3) medulloblastoma (MB) is one of the deadliest forms of the disease for which novel treatment is desperately needed. Here we evaluate ribociclib, a highly selective CDK4/6 inhibitor, with gemcitabine in mouse and human G3MBs. Ribociclib central nervous system (CNS) penetration was assessed by in vivo microdialysis and by IHC and gene expression studies and found to be CNS-penetrant. Tumors from mice treated with short term oral ribociclib displayed inhibited RB phosphorylation, downregulated E2F target genes, and decreased proliferation. Survival studies to determine the efficacy of ribociclib and gemcitabine combination were performed on mice intracranially implanted with luciferase-labeled mouse and human G3MBs. Treatment of mice with the combination of ribociclib and gemcitabine was well tolerated, slowed tumor progression and metastatic spread, and increased survival. Expression-based gene activity and cell state analysis investigated the effects of the combination after short- and long-term treatments. Molecular analysis of treated versus untreated tumors showed a significant decrease in the activity and expression of genes involved in cell-cycle progression and DNA damage response, and an increase in the activity and expression of genes implicated in neuronal identity and neuronal differentiation. Our findings in both mouse and human patient-derived orthotopic xenograft models suggest that ribociclib and gemcitabine combination therapy warrants further investigation as a treatment strategy for children with G3MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Neoplasias Cerebelares/tratamento farmacológico , Criança , Desoxicitidina/análogos & derivados , Humanos , Meduloblastoma/tratamento farmacológico , Camundongos , Purinas , Gencitabina
18.
Neurooncol Adv ; 4(1): vdac055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611273

RESUMO

Background: Genomic aberrations in the cell cycle and PI3K/Akt/mTOR pathways have been reported in diffuse intrinsic pontine glioma (DIPG) and high-grade glioma (HGG). Dual inhibition of CDK4/6 and mTOR has biologic rationale and minimal overlapping toxicities. This study determined the recommended phase 2 dose (RP2D) of ribociclib and everolimus following radiotherapy in children with DIPG and HGG. Methods: Patients were enrolled according to a Rolling-6 design and received ribociclib and everolimus once daily for 21 and 28 days, respectively. All patients with HGG and biopsied DIPG were screened for retinoblastoma protein presence by immunohistochemistry. Pharmacokinetics were analyzed. Results: Nineteen patients enrolled (median age: 8 years [range: 2-18]). Three patients enrolled at each dose level 1 and 2 without dose-limiting toxicities (DLT). Thirteen patients were enrolled at dose level 3, with one patient experiencing a DLT (grade 3 infection). One patient came off therapy before cycle 9 due to cardiac toxicity. The most common grade 3/4 toxicities were neutropenia (33%), leucopenia (17%), and lymphopenia (11%). Steady-state everolimus exposures in combination were 1.9 ± 0.9-fold higher than single-agent administration. Median overall survival for 15 patients with DIPG was 13.9 months; median event-free survival for four patients with HGG was 10.5 months. Two longer survivors had tumor molecular profiling identifying CDKN2A/B deletion and CDK4 overexpression. Conclusion: The combination of ribociclib and everolimus following radiotherapy in children with newly diagnosed DIPG and HGG was well tolerated, with a RP2D of ribociclib 170 mg/m2 and everolimus 1.5 mg/m2. Results will inform a molecularly guided phase II study underway to evaluate efficacy.

19.
Clin Pharmacokinet ; 60(3): 283-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33354735

RESUMO

Selumetinib, a highly specific mitogen-activated protein kinase 1/2 inhibitor, is approved for children older than 2 years of age with neurofibromatosis 1 who have inoperable plexiform neurofibromas. By selectively binding to mitogen-activated protein kinase 1/2 proteins, selumetinib can arrest the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway that regulates critical cellular responses. Selumetinib has shown promising results as a single agent or in combination with conventional chemotherapy and other targeted therapies both preclinically and clinically, in multiple cancers including pediatric low-grade glioma, non-small cell lung cancer, and melanoma, among others. The pharmacokinetic profiles of selumetinib and its active metabolite N-desmethyl selumetinib have been well characterized in both adults and children. Both compounds exhibited rapid absorption and mean terminal elimination half-lives of about 7.5 h, with minimal accumulation at steady state. Three population pharmacokinetic models have been developed in adults and children, characterizing large inter- and intra-patient variabilities, and identifying significant covariates including food intake on selumetinib absorption, weight metrics, age, co-administration of cytochrome modulators, and Asian ethnicity on selumetinib apparent oral clearance. The most common side effects associated with selumetinib are dermatologic, gastrointestinal toxicities, and fatigue. Most toxicities are mild or moderate, generally tolerated and manageable. Cardiovascular and ocular toxicities remain less frequent but can be potentially more severe and require close monitoring. Overall, selumetinib exhibits a favorable safety profile and pharmacokinetic properties, with promising activity in multiple solid tumors, supporting current and further evaluation in combination with conventional chemotherapy and other targeted agents.


Assuntos
Benzimidazóis/farmacocinética , Adulto , Benzimidazóis/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas , Criança , Pré-Escolar , Humanos , Neoplasias Pulmonares , Neurofibroma Plexiforme , Inibidores de Proteínas Quinases/efeitos adversos
20.
J Pharm Biomed Anal ; 204: 114274, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34311284

RESUMO

JQ1, is a cell-permeable small-molecule inhibitor of bromodomain and extra-terminal protein (BET) function with reportedly good CNS penetration, however, unbound and pharmacologically active CNS JQ1 exposures have not been characterized. Additionally, no quantitative bioanalytical methods for JQ1 have been described in the literature to support the CNS penetration studies. In the present article, we discuss the development and validation of a sensitive and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantitative methods to determine JQ1 in mouse plasma and brain microdialysate. JQ1 and the internal standard, dabrafenib (ISTD), were extracted from plasma and microdialysate samples using a simple solid phase extraction protocol performed on an Oasis HLB µElution plate. Chromatographic separation of JQ1 and ISTD was achieved on a reversed phase C12 analytical column with gradient elution profile of mobile phases (MP A: water containing 0.1 % formic acid and MP B: acetonitrile containing 0.1 % formic acid) at a flow rate of 0.6 mL/min. The mass spectrometric detection was performed in the positive MRM ion mode by monitoring the transitions 457.40 > 341.30 (JQ1) and 520.40 > 307.20 (ISTD). The calibration curves demonstrated good linearities over the concentration range of 5-1000 ng/mL for the mouse plasma method (r2 ≥ 0.99) and 0.5-500 ng/mL for the microdialysate method (r2 ≥ 0.99). The experimental limit of quantification obtained was 5 and 0.5 ng/mL for the mouse plasma and microdialysate method, respectively, with the coefficient of variation less than 10 % for the analyte peak area. All the other validation parameters, including intra-and inter-day accuracy and precision, matrix effect, selectivity, carryover effect, and stability, were within the USFDA bioanalytical guidelines acceptance limits. The LC-MS/MS method was successfully applied to a mouse pharmacokinetic and cerebral microdialysis study to characterize the unbound JQ1 exposure in brain extracellular fluid and plasma.


Assuntos
Extração em Fase Sólida , Espectrometria de Massas em Tandem , Animais , Encéfalo , Cromatografia Líquida , Camundongos , Microdiálise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA