Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850728

RESUMO

Cardiovascular diseases (CVD) represent a serious health problem worldwide, of which atrial fibrillation (AF) is one of the most common conditions. Early and timely diagnosis of CVD is essential for successful treatment. When implemented in the healthcare system this can ease the existing socio-economic burden on health institutions and government. Therefore, developing technologies and tools to diagnose CVD in a timely way and detect AF is an important research topic. ECG monitoring patches allowing ambulatory patient monitoring over several days represent a novel technology, while we witness a significant proliferation of ECG monitoring patches on the market and in the research labs, their performance over a long period of time is not fully characterized. This paper analyzes the signal quality of ECG signals obtained using a single-lead ECG patch featuring self-adhesive dry electrode technology collected from six cardiac patients for 5 days. In particular, we provide insights into signal quality degradation over time, while changes in the average ECG quality per day were present, these changes were not statistically significant. It was observed that the quality was higher during the nights, confirming the link with motion artifacts. These results can improve CVD diagnosis and AF detection in real-world scenarios.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Artefatos , Eletrocardiografia , Eletrodos , Monitorização Ambulatorial
2.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808421

RESUMO

Nowadays, even with all the tremendous advances in medicine and health protocols, cardiovascular diseases (CVD) continue to be one of the major causes of death. In the present work, we focus on a specific abnormality: ST-segment deviation, which occurs regularly in high-performance athletes and elderly people, serving as a myocardial infarction (MI) indicator. It is usually diagnosed manually by experts, through visual interpretation of the printed electrocardiography (ECG) signal. We propose a methodology to detect ST-segment deviation and quantify its scale up to 1 mV by extracting statistical, point-to-point beat characteristics and signal quality indexes (SQIs) from single-lead ECG. We do so by applying automated machine learning methods to find the best hyperparameter configuration for classification and regression models. For validation of our method, we use the ST-T database from Physionet; the results show that our method obtains 98.30% accuracy in the case of a multiclass problem and 99.87% accuracy in the case of binarization.


Assuntos
Eletrocardiografia , Infarto do Miocárdio , Idoso , Humanos , Infarto do Miocárdio/diagnóstico , Fatores de Tempo
3.
Sensors (Basel) ; 21(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066186

RESUMO

Wearable technologies are becoming a profitable means of monitoring a person's health state, such as heart rate and physical activity. The use of the smartwatch is becoming consolidated, not only as a novelty but also as a very useful tool for daily use. In addition, other devices, such as helmets or belts, are beneficial for monitoring workers and the early detection of any anomaly. They can provide valuable information, especially in work environments, where they help reduce the rate of accidents and occupational diseases, which makes them powerful Personal Protective Equipment (PPE). The constant monitoring of the worker's health can be done in real-time, through temperature, falls, noise, impacts, or heart rate meters, activating an audible and vibrating alarm when an anomaly is detected. The gathered information is transmitted to a server in charge of collecting and processing it. In the first place, this paper provides an exhaustive review of the state of the art on works related to electronics for human activity behavior. After that, a smart multisensory bracelet, combined with other devices, developed a control platform that can improve operators' security in the working environment. Artificial Intelligence and the Internet of Things (AIoT) bring together the information to improve safety on construction sites, power stations, power lines, etc. Real-time and historic data is used to monitor operators' health and a hybrid system between Gaussian Mixture Model and Human Activity Classification. That is, our contribution is also founded on the use of two machine learning models, one based on unsupervised learning and the other one supervised. Where the GMM gave us a performance of 80%, 85%, 70%, and 80% for the 4 classes classified in real time, the LSTM obtained a result under the confusion matrix of 0.769, 0.892, and 0.921 for the carrying-displacing, falls, and walking-standing activities, respectively. This information was sent in real time through the platform that has been used to analyze and process the data in an alarm system.


Assuntos
Dispositivos Eletrônicos Vestíveis , Local de Trabalho , Inteligência Artificial , Atividades Humanas , Humanos , Monitorização Fisiológica
4.
Sensors (Basel) ; 21(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300392

RESUMO

It is estimated that we spend one-third of our lives at work. It is therefore vital to adapt traditional equipment and systems used in the working environment to the new technological paradigm so that the industry is connected and, at the same time, workers are as safe and protected as possible. Thanks to Smart Personal Protective Equipment (PPE) and wearable technologies, information about the workers and their environment can be extracted to reduce the rate of accidents and occupational illness, leading to a significant improvement. This article proposes an architecture that employs three pieces of PPE: a helmet, a bracelet and a belt, which process the collected information using artificial intelligence (AI) techniques through edge computing. The proposed system guarantees the workers' safety and integrity through the early prediction and notification of anomalies detected in their environment. Models such as convolutional neural networks, long short-term memory, Gaussian Models were joined by interpreting the information with a graph, where different heuristics were used to weight the outputs as a whole, where finally a support vector machine weighted the votes of the models with an area under the curve of 0.81.


Assuntos
Equipamento de Proteção Individual , Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Humanos , Redes Neurais de Computação , Local de Trabalho
5.
Sensors (Basel) ; 20(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139608

RESUMO

Information and communication technologies (ICTs) have contributed to advances in Occupational Health and Safety, improving the security of workers. The use of Personal Protective Equipment (PPE) based on ICTs reduces the risk of accidents in the workplace, thanks to the capacity of the equipment to make decisions on the basis of environmental factors. Paradigms such as the Industrial Internet of Things (IIoT) and Artificial Intelligence (AI) make it possible to generate PPE models feasibly and create devices with more advanced characteristics such as monitoring, sensing the environment and risk detection between others. The working environment is monitored continuously by these models and they notify the employees and their supervisors of any anomalies and threats. This paper presents a smart helmet prototype that monitors the conditions in the workers' environment and performs a near real-time evaluation of risks. The data collected by sensors is sent to an AI-driven platform for analysis. The training dataset consisted of 11,755 samples and 12 different scenarios. As part of this research, a comparative study of the state-of-the-art models of supervised learning is carried out. Moreover, the use of a Deep Convolutional Neural Network (ConvNet/CNN) is proposed for the detection of possible occupational risks. The data are processed to make them suitable for the CNN and the results are compared against a Static Neural Network (NN), Naive Bayes Classifier (NB) and Support Vector Machine (SVM), where the CNN had an accuracy of 92.05% in cross-validation.


Assuntos
Inteligência Artificial , Dispositivos de Proteção da Cabeça , Internet das Coisas , Redes Neurais de Computação , Teorema de Bayes , Humanos
6.
JMIR Form Res ; 7: e49346, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032699

RESUMO

BACKGROUND: Accurate detection of myocardial ischemia and arrhythmias during free-living exercise could play a pivotal role in screening and monitoring for the prevention of exercise-related cardiovascular events in high-risk populations. Although remote electrocardiogram (ECG) solutions are emerging rapidly, existing technology is neither designed nor validated for continuous use during vigorous exercise. OBJECTIVE: In this proof-of-concept study, we evaluated the usability, signal quality, and accuracy for arrhythmia detection of a single-lead ECG patch platform featuring self-adhesive dry electrode technology in individuals with chronic coronary syndrome. This sensor was evaluated during exercise and for prolonged, continuous monitoring. METHODS: We recruited a total of 6 consecutive patients with chronic coronary syndrome scheduled for an exercise stress test (EST) as part of routine cardiac follow-up. Traditional 12-lead ECG recording was combined with monitoring with the ECG patch. Following the EST, the participants continuously wore the sensor for 5 days. Intraclass correlation coefficients (ICC) and Wilcoxon signed rank tests were used to assess the utility of detecting arrhythmias with the patch by comparing the evaluations of 2 blinded assessors. Signal quality during EST and prolonged monitoring was evaluated by using a signal quality indicator. Additionally, connection time was calculated for prolonged ECG monitoring. The comfort and usability of the patch were evaluated by a web-based self-assessment questionnaire. RESULTS: A total of 6 male patients with chronic coronary syndrome (mean age 69.8, SD 6.2 years) completed the study protocol. The patch was worn for a mean of 118.3 (SD 5.6) hours. The level of agreement between the patch and 12-lead ECG was excellent for the detection of premature atrial contractions and premature ventricular contractions during the whole test (ICC=0.998, ICC=1.000). No significant differences in the total number of premature atrial contractions and premature ventricular contractions were detected neither during the entire exercise test (P=.79 and P=.18, respectively) nor during the exercise and recovery stages separately (P=.41, P=.66, P=.18, and P=.66). A total of 1 episode of atrial fibrillation was detected by both methods. Total connection time during recording was between 88% and 100% for all participants. There were no reports of skin irritation, erythema, or pain while wearing the patch. CONCLUSIONS: This proof-of-concept study showed that this innovative ECG patch based on self-adhesive dry electrode technology can potentially be used for arrhythmia detection during vigorous exercise. The results suggest that the wearable patch is also usable for prolonged continuous ECG monitoring in free-living conditions and can therefore be of potential use in cardiac rehabilitation and tele-monitoring for the prevention of exercise-related cardiovascular events. Future efforts will focus on optimizing signal quality over time and conducting a larger-scale validation study focusing on both arrhythmia and ischemia detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA