Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054769

RESUMO

One of the reported substrates for the endoplasmic reticulum (ER) translocation inhibitor cyclotriazadisulfonamide (CADA) is DNAJC3, a chaperone of the unfolded protein response during ER stress. In this study, we investigated the impact of altered DNAJC3 protein levels on the inhibitory activity of CADA. By comparing WT DNAJC3 with a CADA-resistant DNAJC3 mutant, we observed the enhanced sensitivity of human CD4, PTK7 and ERLEC1 for CADA when DNAJC3 was expressed at high levels. Combined treatment of CADA with a proteasome inhibitor resulted in synergistic inhibition of protein translocation and in the rescue of a small preprotein fraction, which presumably corresponds to the CADA affected protein fraction that is stalled at the Sec61 translocon. We demonstrate that DNAJC3 enhances the protein translation of a reporter protein that is expressed downstream of the CADA-stalled substrate, suggesting that DNAJC3 promotes the clearance of the clogged translocon. We propose a model in which a reduced DNAJC3 level by CADA slows down the clearance of CADA-stalled substrates. This results in higher residual translocation into the ER lumen due to the longer dwelling time of the temporarily stalled substrates in the translocon. Thus, by directly reducing DNAJC3 protein levels, CADA attenuates its net down-modulating effect on its substrates.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Transporte Proteico , Canais de Translocação SEC/metabolismo , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Resposta a Proteínas não Dobradas
2.
Planta Med ; 83(7): 615-623, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27806409

RESUMO

Chlorogenic acids are secondary metabolites in diverse plants. Some chlorogenic acids extracted from traditional medicinal plants are known for their healing properties, e.g., against viral infections. Also, green coffee beans are a rich source of chlorogenic acids, with 5-O-caffeoylquinic acid being the most abundant chlorogenic acid in coffee. We previously reported the synthesis of the regioisomers of lactones, bearing different substituents on the quinidic core. Here, 3,4-O-dicaffeoyl-1,5-γ-quinide and three dimethoxycinnamoyl-γ-quinides were investigated for in vitro antiviral activities against a panel of 14 human viruses. Whereas the dimethoxycinnamoyl-γ-quinides did not show any antiviral potency in cytopathogenic effect reduction assays, 3,4-O-dicaffeoyl-1,5-γ-quinide exerted mild antiviral activity against herpes simplex viruses, adenovirus, and influenza virus. Interestingly, when the compounds were evaluated against respiratory syncytial virus, a potent antiviral effect of 3,4-O-dicaffeoyl-1,5-γ-quinide was observed against both subtypes of respiratory syncytial virus, with EC50 values in the submicromolar range. Time-of-addition experiments revealed that this compound acts on an intracellular post-entry replication step. Our data show that 3,4-O-dicaffeoyl-1,5-γ-quinide is a relevant candidate for lead optimization and further mechanistic studies, and warrants clinical development as a potential anti-respiratory syncytial virus drug.


Assuntos
Antivirais/farmacologia , Ácido Clorogênico/uso terapêutico , Café/química , Extratos Vegetais/uso terapêutico , Ácido Quínico/análogos & derivados , Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Orthomyxoviridae/efeitos dos fármacos , Ácido Quínico/uso terapêutico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Sistema Respiratório/virologia , Células Vero
3.
Antiviral Res ; 209: 105518, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587900

RESUMO

In this study, a series of 48 hybrids of the functionalised 1-[(1H-1,2,3-triazole-4-yl)methyl]quinazoline-2,4-dione 17-22 were synthesised and evaluated for potential antiviral activity. The new hybrids were designed to contain a diethoxyphosphoryl group connected to the triazole moiety via ethylene or propylene linker, and in which the benzyl or benzoyl function is substituted at N3 in the quinazoline-2,4-dione moiety. The Cu(I)-catalyzed Hüisgen dipolar cycloaddition of azidophosphonates 23 and 24 with the respective N1-propargylquinazoline-2,4-diones 26aa-26ag, 26ba-26bg, 27aa-27ad and 27ba-27bd was applied for the syntheses of the designed compounds. All final hybrids 17-22 and N3-functionalised N1-propargylquinazoline-2,4-diones 26 and 27 were subsequently evaluated for their antiviral activity toward a broad range of DNA and RNA viruses. Importantly, hybrids 19be-19bg and 20be-20bg showed profound antiviral activities against Respiratory Syncytial Virus (RSV) with EC50 values in the lower micromolar range, with activity against viral strains of both subtypes (RSV A and B). In addition, several compounds also exerted some weak antiviral activity against varicella zoster virus. Finally, 19 ag was the only compound that showed antiviral potency against human cytomegalovirus, although with rather weak inhibitory activity. Notably, none of the tested compounds was cytotoxic toward uninfected cell lines used for the antiviral assays at a concentration up to 100 µM, returning interesting therapeutic indices for respiratory syncytial virus.


Assuntos
Quinazolinas , Vírus Sincicial Respiratório Humano , Humanos , Quinazolinas/farmacologia , Antivirais/farmacologia , Linhagem Celular , Triazóis/farmacologia , Relação Estrutura-Atividade
4.
Sci Adv ; 9(9): eadf0797, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867692

RESUMO

During cotranslational translocation, the signal peptide of a nascent chain binds Sec61 translocon to initiate protein transport through the endoplasmic reticulum (ER) membrane. Our cryo-electron microscopy structure of ribosome-Sec61 shows binding of an ordered heterotetrameric translocon-associated protein (TRAP) complex, in which TRAP-γ is anchored at two adjacent positions of 28S ribosomal RNA and interacts with ribosomal protein L38 and Sec61α/γ. Four transmembrane helices (TMHs) of TRAP-γ cluster with one C-terminal helix of each α, ß, and δ subunits. The seven TMH bundle helps position a crescent-shaped trimeric TRAP-α/ß/δ core in the ER lumen, facing the Sec61 channel. Further, our in vitro assay establishes the cyclotriazadisulfonamide derivative CK147 as a translocon inhibitor. A structure of ribosome-Sec61-CK147 reveals CK147 binding the channel and interacting with the plug helix from the lumenal side. The CK147 resistance mutations surround the inhibitor. These structures help in understanding the TRAP functions and provide a new Sec61 site for designing translocon inhibitors.


Assuntos
Proteínas de Ligação ao Cálcio , Ribossomos , Canais de Translocação SEC , Microscopia Crioeletrônica
5.
Antiviral Res ; 203: 105342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595082

RESUMO

Despite the great success of the administered vaccines against SARS-CoV-2, the virus can still spread, as evidenced by the current circulation of the highly contagious Omicron variant. This emphasizes the additional need to develop effective antiviral countermeasures. In the context of early preclinical studies for antiviral assessment, robust cellular infection systems are required to screen drug libraries. In this study, we reported the implementation of a human glioblastoma cell line, stably expressing ACE2, in a SARS-CoV-2 cytopathic effect (CPE) reduction assay. These glioblastoma cells, designated as U87.ACE2+, expressed ACE2 and cathepsin B abundantly, but had low cellular levels of TMPRSS2 and cathepsin L. The U87.ACE2+ cells fused highly efficiently and quickly with SARS-CoV-2 spike expressing cells. Furthermore, upon infection with SARS-CoV-2 wild-type virus, the U87.ACE2+ cells displayed rapidly a clear CPE that resulted in complete cell lysis and destruction of the cell monolayer. By means of several readouts we showed that the U87.ACE2+ cells actively replicate SARS-CoV-2. Interestingly, the U87.ACE2+ cells could be successfully implemented in an MTS-based colorimetric CPE reduction assay, providing IC50 values for Remdesivir and Nirmatrelvir in the (low) nanomolar range. Lastly, the U87.ACE2+ cells were consistently permissive to all tested SARS-CoV-2 variants of concern, including the current Omicron variant. Thus, ACE2 expressing glioblastoma cells are highly permissive to SARS-CoV-2 with productive viral replication and with the induction of a strong CPE that can be utilized in high-throughput screening platforms.


Assuntos
Tratamento Farmacológico da COVID-19 , Glioblastoma , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Vacinas contra COVID-19 , Linhagem Celular , Glioblastoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Biotechniques ; 72(6): 245-254, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445605

RESUMO

Basic and antiviral research on SARS-CoV-2 rely on cellular assays of virus replication in vitro. In addition, accurate detection of virus-infected cells and released virus particles is needed to study virus replication and to profile new candidate antiviral drugs. Here, by flow cytometry, we detect SARS-CoV-2 infection at single cell level and distinguish infected Vero E6 cells from uninfected bystander cells. Furthermore, based on the viral nucleocapsid expression, subpopulations of infected cells that are in an early or late phase of viral replication can be differentiated. Importantly, this flow cytometric technique complements our duplex RT-qPCR detection of viral E and N, and it can be applied to all current SARS-CoV-2 variants of concern, including the highly mutated Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , Chlorocebus aethiops , Citometria de Fluxo , Humanos , SARS-CoV-2/genética , Células Vero
7.
Front Cell Infect Microbiol ; 12: 989534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111239

RESUMO

Urtica dioica agglutinin (UDA) is a carbohydrate-binding small monomeric protein isolated from stinging nettle rhizomes. It inhibits replication of a broad range of viruses, including coronaviruses, in multiple cell types, with appealing selectivity. In this work, we investigated the potential of UDA as a broad-spectrum antiviral agent against SARS-CoV-2. UDA potently blocks transduction of pseudotyped SARS-CoV-2 in A549.ACE2+-TMPRSS2 cells, with IC50 values ranging from 0.32 to 1.22 µM. Furthermore, UDA prevents viral replication of the early Wuhan-Hu-1 strain in Vero E6 cells (IC50 = 225 nM), but also the replication of SARS-CoV-2 variants of concern, including Alpha, Beta and Gamma (IC50 ranging from 115 to 171 nM). In addition, UDA exerts antiviral activity against the latest circulating Delta and Omicron variant in U87.ACE2+ cells (IC50 values are 1.6 and 0.9 µM, respectively). Importantly, when tested in Air-Liquid Interface (ALI) primary lung epithelial cell cultures, UDA preserves antiviral activity against SARS-CoV-2 (20A.EU2 variant) in the nanomolar range. Surface plasmon resonance (SPR) studies demonstrated a concentration-dependent binding of UDA to the viral spike protein of SARS-CoV-2, suggesting interference of UDA with cell attachment or subsequent virus entry. Moreover, in additional mechanistic studies with cell-cell fusion assays, UDA inhibited SARS-CoV-2 spike protein-mediated membrane fusion. Finally, pseudotyped SARS-CoV-2 mutants with N-glycosylation deletions in the S2 subunit of the spike protein remained sensitive to the antiviral activity of UDA. In conclusion, our data establish UDA as a potent fusion inhibitor for the current variants of SARS-CoV-2.


Assuntos
COVID-19 , Urtica dioica , Enzima de Conversão de Angiotensina 2 , Antirretrovirais , Antivirais/farmacologia , Carboidratos , Európio , Humanos , Receptores de Superfície Celular , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Urtica dioica/metabolismo , Proteínas Virais
8.
Front Chem ; 10: 1058229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385995

RESUMO

RNA viral infections, including those caused by respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Venezuelan Equine encephalitis virus (VEEV), pose a major global health challenge. Here, we report the synthesis and screening of a series of pyrrolo[2,3-b]pyridines targeting RSV, SARS-CoV-2 and/or VEEV. From this campaign, a series of lead compounds was generated that demonstrated antiviral activity in the low single-digit micromolar range against the various viruses and did not show cytotoxicity. These findings highlight the potential of 3-alkynyl-5-aryl-7-aza-indoles as a promising chemotype for the development of broad-spectrum antiviral agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA