Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Circ Res ; 132(5): 601-624, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786216

RESUMO

BACKGROUND: Hypertension can lead to podocyte damage and subsequent apoptosis, eventually resulting in glomerulosclerosis. Although alleviating podocyte apoptosis has clinical significance for the treatment of hypertensive nephropathy, an effective therapeutic target has not yet been identified. The function of septin4, a proapoptotic protein and an important marker of organ damage, is regulated by post-translational modification. However, the exact role of septin4 in regulating podocyte apoptosis and its connection to hypertensive renal damage remains unclear. METHODS: We investigated the function and mechanism of septin4 in hypertensive nephropathy to discover a theoretical basis for targeted treatment. Mouse models including Rosa 26 (Gt(ROSA)26Sor)-SIRT2 (silent mating type information regulation 2 homolog-2)-Flag-TG (transgenic) (SIRT2-TG) mice SIRT2-knockout, and septin4-K174Q mutant mice, combined with proteomic and acetyl proteomics analysis, followed by multiple molecular biological methodologies, were used to demonstrate mechanisms of SIRT2-mediated deacetylation of septin4-K174 in hypertensive nephropathy. RESULTS: Using transgenic septin4-K174Q mutant mice treated with the antioxidant Tempol, we found that hyperacetylation of the K174 site of septin4 exacerbates Ang II (angiotensin II)- induced hypertensive renal injury resulting from oxidative stress. Proteomics and Western blotting assays indicated that septin4-K174Q activates the cleaved-PARP1 (poly [ADP-ribose] polymerase family, member 1)-cleaved-caspase3 pathway. In septin4-knockdown human renal podocytes, septin4-K174R, which mimics deacetylation at K174, rescues podocyte apoptosis induced by Ang II. Immunoprecipitation and mass spectrometry analyses identified SIRT2 as a deacetylase that interacts with the septin4 GTPase domain and deacetylates septin4-K174. In Sirt2-deficient mice and SIRT2-knockdown renal podocytes, septin4-K174 remains hyperacetylated and exacerbates hypertensive renal injury. By contrast, in Rosa26-Sirt2-Flag (SIRT2-TG) mice and SIRT2-knockdown renal podocytes reexpressing wild-type SIRT2, septin4-K174 is hypoacetylated and mitigates hypertensive renal injury. CONCLUSIONS: Septin4, when activated through acetylation of K174 (K174Q), promotes hypertensive renal injury. Septin4-K174R, which mimics deacetylation by SIRT2, inhibits the cleaved-PARP1-cleaved-caspase3 pathway. Septin4-K174R acts as a renal protective factor, mitigating Ang II-induced hypertensive renal injury. These findings indicate that septin4-K174 is a potential therapeutic target for the treatment of hypertensive renal injury.


Assuntos
Hipertensão Renal , Hipertensão , Animais , Humanos , Camundongos , Apoptose , Hipertensão Renal/genética , Rim/metabolismo , Camundongos Transgênicos , Proteômica , Sirtuína 2/genética , Sirtuína 2/metabolismo
2.
Pharmacol Res ; 206: 107281, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942341

RESUMO

Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.


Assuntos
Doenças Cardiovasculares , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Animais , Apoptose/efeitos dos fármacos , Transdução de Sinais , Fármacos Cardiovasculares/uso terapêutico , Fármacos Cardiovasculares/farmacologia
3.
Environ Sci Technol ; 58(2): 1369-1377, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38048160

RESUMO

An improved fundamental understanding of active site structures can unlock opportunities for catalysis from conceptual design to industrial practice. Herein, we present the computational discovery and experimental demonstration of a highly active surface-phosphorylated ceria catalyst that exhibits robust chlorine tolerance for catalysis. Ab initio molecular dynamics (AIMD) calculations and in situ near-ambient pressure X-ray photoelectron spectroscopy (in situ NAP-XPS) identified a predominantly HPO4 active structure on CeO2(110) and CeO2(111) facets at room temperature. Importantly, further elevating the temperature led to a unique hydrogen (H) atom hopping between coordinatively unsaturated oxygen and the adjacent P═O group of HPO4. Such a mobile H on the catalyst surface can effectively quench the chlorine radicals (Cl•) via an orientated reaction analogous to hydrogen atom transfer (HAT), enabling the surface-phosphorylated CeO2-supported monolithic catalyst to exhibit both expected activity and stability for over 68 days during a pilot test, catalyzing the destruction of a complex chlorinated volatile organic compound industrial off-gas.


Assuntos
Cloro , Oxigênio , Catálise , Temperatura , Hidrogênio
4.
BMC Plant Biol ; 23(1): 375, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525109

RESUMO

BACKGROUND: Abrus cantoniensis Hance. (Ac) and Abrus mollis (Am), two edible and medicinal plants with economic value in southern China, belong to the Abrus genus. Due to its growth characteristics, Am often replaces Ac in folk medicine. However, the latest National Pharmacopeia of China only recommends Ac. The differences in the metabolite composition of the plants are directly related to the differences in their clinical efficacy. RESULTS: The difference in metabolites were analyzed using an untargeted metabolomic approach based on ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC‒ESI‒MS/MS). The roots (R), stems (S) and leaves (L) of the two varieties were examined, and 635 metabolites belonging to 8 classes were detected. A comparative study revealed clear variations in the metabolic profiles of the two plants, and the AmR group had more active ingredients (flavonoids and terpenoids) than the AcR group. The metabolites classified as flavonoids and triterpene saponins showed considerable variations among the various samples. Both Ac and Am had unique metabolites. Two metabolites (isovitexin-2''-xyloside and soyasaponin V) specifically belong to Ac, and nine metabolites (vitexin-2"-O-galactoside, ethyl salicylate, 6-acetamidohexanoic acid, rhein-8-O-glucoside, hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)-glucoside, methyl dioxindole-3-acetate, veratric acid, isorhamnetin-3-O-sophoroside-7-O-rhamnoside, and isorhamnetin-3-O-sophoroside) specifically belong to Am. CONCLUSIONS: The metabolite differences between Ac and Am cause the differences in their clinical efficacy. Our findings serve as a foundation for further investigation of biosynthesis pathways and associated bioactivities and provide guidance for the clinical application of traditional Chinese medicine.


Assuntos
Abrus , Abrus/química , Espectrometria de Massas em Tandem , Flavonoides/química , Glucosídeos , Metabolômica
5.
Basic Res Cardiol ; 118(1): 48, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938421

RESUMO

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Fosforilação Oxidativa , Aldeído Liases , Redes e Vias Metabólicas
6.
J Nutr ; 153(12): 3373-3381, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37923224

RESUMO

BACKGROUND: Heat stress (HS) has a harmful impact on the male reproductive system, primarily by reducing the sperm quality. The testicular microenvironment plays an important role in sperm quality. OBJECTIVES: This study aimed to explore the underlying mechanism by which HS impairs the male reproductive system through the testicular microenvironment. METHODS: Ten-week-old male mice (n = 8 mice/group) were maintained at a normal temperature (25°C, control) or subjected to HS (38°C for 2 h each day, HS) for 2 wk. The epididymides and testes were collected at week 2 to determine sperm quality, histopathology, retinol concentration, the expression of retinol metabolism-related genes, and the testicular microbiome. The testicular microbiome profiles were analyzed using biostatistics and bioinformatics; other data were analyzed using a 2-sided Student's t test. RESULTS: Compared with the control, HS reduced (P < 0.05) sperm count (42.4%) and motility (97.7%) and disrupted the integrity of the blood-testis barrier. Testicular microbial profiling analysis revealed that HS increased the abundance of the genera Asticcacaulis, Enhydrobacter, and Stenotrophomonas (P < 0.05) and decreased the abundance of the genera Enterococcus and Pleomorphomonas (P < 0.05). Notably, the abundance of Asticcacaulis spp. showed a significant negative correlation with sperm count (P < 0.001) and sperm motility (P < 0.001). Moreover, Asticcacaulis spp. correlated significantly with most blood differential metabolites, particularly retinol (P < 0.05). Compared with the control, HS increased serum retinol concentrations (25.3%) but decreased the testis retinol concentration by 23.7%. Meanwhile, HS downregulated (P < 0.05) the expression of 2 genes (STRA6 and RDH10) and a protein (RDH10) involved in retinol metabolism by 27.3%-36.6% in the testis compared with the control. CONCLUSIONS: HS reduced sperm quality, mainly because of an imbalance in the testicular microenvironment potentially caused by an increase in Asticcacaulis spp. and disturbed retinol metabolism. These findings may offer new strategies for improving male reproductive capacity under HS.


Assuntos
Testículo , Vitamina A , Masculino , Camundongos , Animais , Testículo/metabolismo , Vitamina A/metabolismo , Motilidade dos Espermatozoides , Sêmen , Espermatozoides/metabolismo , Espermatozoides/patologia , Resposta ao Choque Térmico
7.
Biotechnol Lett ; 45(2): 209-223, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504268

RESUMO

Matrine (MA) is an alkaloid extracted from the root of genus Sophora with various pharmacological activities. Production of MA by endophytic fungi offers an alternative challenge to reduce the massive consumption to meet the increasing demand of MA. In the current study, the positive strains with MA producing ability were screened from endophytic fungal isolated from the root of Sophora tonkinensis Gagnep. Chromatographic analyses verified the identity of the produced MA. Among these fungi, Galactomyces candidum strain TRP-7 was the most valuable strain for MA production with the initial yield 8.26 mg L-1. The MA production was efficiently maximized up to 17.57 mg L-1 of fermentation broth, after optimization of eight process parameters using Plackett-Burman and Box-Behnken designs. The statistical optimization resulted in a 1.127 times increase in MA production as compared to the initial yield of TRP-7. This is the first report to isolate endophytic fungi with MA-producing activity from S. tonkinensis Gagnep., and to identify an endophytic fungus G. candidum TRP-7 as a new promising start strain for a higher MA yield.


Assuntos
Alcaloides , Antineoplásicos , Fermentação , Matrinas , Fungos
8.
Arch Virol ; 167(1): 1-20, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34636955

RESUMO

BACKGROUND: Infection with viruses such as human papillomavirus (HPV) is known to induce carcinomas, including esophageal carcinoma (EC). However, the possible role of viruses other than HPV in EC carcinogenesis is unclear in many studies. Here, we aimed to explore the association between infection with viruses other than HPV and EC risk by integrating existing studies of epidemiology in a meta-analysis. METHODS: The PubMed, Web of Science, Cochrane Library and China National Knowledge Infrastructure databases were searched. The Newcastle-Ottawa scale was used to assess the quality of the included studies. Odds ratios (ORs) or relative risks (RRs) (with 95% confidence intervals [CIs]) were pooled to estimate the association between virus infection and risk of EC. RESULTS: We included 31 eligible studies involving nine different viruses. Overall, an increased risk of EC was associated with hepatitis B virus (HBV) infection (OR = 1.19, 95%CI 1.01-1.36) and hepatitis C virus (HCV) infection (OR = 1.77, 95%CI 1.17-2.36), but not human immunodeficiency virus (HIV) infection, according to the current evidence. The evidence for an association with Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), JC virus (JCV), cytomegalovirus (CMV), human T-lymphotropic virus 1 (HTLV-1) or Merkel cell polyomavirus (MCPyV) infection was insufficient. CONCLUSIONS: We confirmed the relationship between HBV and HCV infection and the risk of EC, but we found no association of EC risk with HIV and EBV infection. The roles of HSV-1, JCV, CMV, HTLV-1, and MCPyV were not clear because of the limited number of studies.


Assuntos
Alphapapillomavirus , Carcinoma , Infecções por Vírus Epstein-Barr , Infecções por Polyomavirus , Herpesvirus Humano 4 , Humanos , Papillomaviridae/genética
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(11): 1512-1521, 2022 Nov 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36481629

RESUMO

OBJECTIVES: Frizzled 7 (FZD7) is abnormally expressed and activated in a variety of cancers. In ovarian cancer, overexpression of FZD7 reduces the sensitivity of platinum-resistant ovarian cancer cells to ferroptosis, thereby allowing cancer cells to survive. However, whether FZD7 inhibits ferroptosis in ovarian cancer cells and its mechanisms are remain unclear. This study aims to explore the effects of FZD7 and its upstream regulator miR-1-3p on ferroptosis in ovarian cancer cells are evaluated to clarify the molecular mechanism for miR-1-3p and FZD7's involvement in ferroptosis in ovarian cancer cells. METHODS: Human ovarian cancer cell lines HO8910 and SKOV3 were used as the research subjects. In the first part of the experiment, human ovarian cancer cells were transfected with blank plasmid and FZD7 overexpression plasmid, respectively; in the second and third parts, human ovarian cancer cells were transfected with miR-1-3p mimics negative control, miR-1-3p mimics, miR-1-3p inhibitors negative control, and miR-1-3p inhibitors, respectively; in the fourth part of the experiment, human ovarian cancer cells were transfected with miR-1-3p mimics and miR-1-3p mimics+FZD7 overexpression plasmid, respectively, and normal cultured cells were set as the control group. The human ovarian cancer cell ferroptosis model was established by incubating human ovarian cancer cells with different treatments with ferroptosis inducer Erastin or RSL3. Real-time RT-PCR was used to detect the mRNA expression levels of FZD7 and miR-1-3p; Western blotting was used to detect the protein expression levels of FZD7; CCK-8 assay was used to detect the cell viability; lipid peroxidation colorimetric assay kit was used to detect the level of intracellular MDA; and iron assay kit was used to detect the level of intracellular Fe2+. Dual-luciferase assay was used to detect the targeting relationship between miR-1-3p and FZD7. RESULTS: Overexpression of FZD7 increased the cell viability of human ovarian cancer cell lines HO8910 or SKOV3 (P<0.05, P<0.01, or P<0.001) and decreased the intracellular MDA levels (P<0.01) in Erastin-treated or RSL3-treated ovarian cancer cells. FZD7 was a direct target of miR-1-3p, which inhibited the expression of FZD7 (P<0.01) by binding to the 3'-untranslated region (3'UTR) site of FZD7. MiR-1-3p mimics decreased the cell viability of human ovarian cancer cell lines HO8910 or SKOV3 (P<0.05, P<0.01, or P<0.001) and increased the intracellular MDA levels (P<0.01) in Erastin-treated or RSL3-treated ovarian cancer cells; while miR-1-3p inhibitors significantly increased the cell viability of human ovarian cancer cell lines HO8910 or SKOV3 (P<0.05, P<0.01, or P<0.001) and decreased the intracellular MDA levels (P<0.01) in Erastin-treated or RSL3-treated ovarian cancer cells. The effect of miR-1-3p mimics on enhancing the sensitivity of human ovarian cancer cells to Erastin-induced or RSL3-induced ferroptosis was abrogated by overexpression of FZD7(P<0.05 or P<0.01). CONCLUSIONS: MiR-1-3p enhances the sensitivity of ovarian cancer cells to ferroptosis by targeting FZD7.


Assuntos
Ferroptose , Receptores Frizzled , MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Receptores Frizzled/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética
10.
Molecules ; 25(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824884

RESUMO

The use of antagonistic microorganisms and their volatile organic compounds (VOCs) to control plant fungal pathogens is an eco-friendly and promising substitute for chemical fungicides. In this work, endophytic bacterium ETR-B22, isolated from the root of Sophora tonkinensis Gagnep., was found to exhibit strong antagonistic activity against 12 fungal pathogens found in agriculture. Strain ETR-B22 was identified as Burkholderia cenocepacia based on 16S rRNA and recA sequences. We evaluated the antifungal activity of VOCs emitted by ETR-B22. The VOCs from strain ETR-B22 also showed broad-spectrum antifungal activity against 12 fungal pathogens. The composition of the volatile profiles was analyzed based on headspace solid phase microextraction (HS-SPME) gas chromatography coupled to mass spectrometry (GC-MS). Different extraction strategies for the SPME process significantly affected the extraction efficiency of the VOCs. Thirty-two different VOCs were identified. Among the VOC of ETR-B22, dimethyl trisulfide, indole, methyl anthranilate, methyl salicylate, methyl benzoate, benzyl propionate, benzyl acetate, 3,5-di-tert-butylphenol, allyl benzyl ether and nonanoic acid showed broad-spectrum antifungal activity, and are key inhibitory compounds produced by strain ETR-B22 against various fungal pathogens. Our results suggest that the endophytic strain ETR-B22 and its VOCs have high potential for use as biological controls of plant fungal pathogens.


Assuntos
Antifúngicos/farmacologia , Burkholderia cenocepacia/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Raízes de Plantas/microbiologia , Microextração em Fase Sólida/métodos , Sophora/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/análise , Antifúngicos/isolamento & purificação , Burkholderia cenocepacia/crescimento & desenvolvimento , RNA Ribossômico 16S/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação
11.
Molecules ; 24(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813374

RESUMO

Three new substituted bithiophenes (1⁻3), and one new sulf-polyacetylene ester, ritroyne A (16) were isolated from the whole plant of Echinops ritro together with twelve known substituted thiophenes. The structures were elucidated on the basis of extensive spectroscopic analysis including 1D and 2D NMR as well as MS. Furthermore, the absolute configuration of ritroyne A (16) was established by computational methods. In bioscreening experiments, four compounds (2, 4, 12, 14) showed similar antibacterial activity against Staphylococcus aureus ATCC 2592 with levofloxacin (8 µg/mL). Five compounds (2, 4, 9, 12, 14) exhibited antibacterial activities against Escherichia coli ATCC 25922, with minimum inhibitory concentration (MIC) values of 32⁻64 µg/mL. Three compounds (2, 4, 12) exhibited antifungal activities against Candida albicans ATCC 2002 with MIC values of 32⁻64 µg/mL. However, compound 16 did not exhibit antimicrobial activities against three microorganisms.


Assuntos
Echinops (Planta)/química , Polímero Poliacetilênico/química , Polímero Poliacetilênico/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos
12.
Cell Commun Signal ; 16(1): 6, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402287

RESUMO

BACKGROUND: Despite the implications for tumor growth and cancer drug resistance, the mechanisms underlying differences in energy metabolism among cells remain unclear. METHODS: To analyze differences between cell types, cell viability, ATP and α-ketoglutaric acid levels, the oxygen consumption rate and extracellular acidification rate, and the expression of key enzymes involved in α-KG metabolism and transfer were examined. Additionally, UPLC-MS/MS was used to determine the doxorubicin (DOX) content in SMMC-7721 and SMMC-7721/DOX cells. RESULTS: We found that energy metabolism in SMMC-7721 cells is mainly dependent on the glycolysis pathway, whereas SMMC-7721/DOX cells depend more heavily on the oxidative phosphorylation pathway. Cell viability and intracellular ATP levels in SMMC-7721/DOX cells were significantly reduced by rotenone and oligomycin, inhibitors of oxidative phosphorylation. However, SMMC-7721 cell properties were more strongly influenced by an inhibitor of glycolysis, 2-deoxy-D-glucose. Furthermore, the suppressive effect of α-KG on ATP synthase plays an important role in the low levels of oxidative phosphorylation in SMMC-7721 cells; this effect could be strengthened by the metabolic poison methotrexate and reversed by L-(-)-malic acid, an accelerator of the malate-aspartate cycle. CONCLUSIONS: The inhibitory effect of α-KG on ATP synthase was uncoupled with the tricarboxylic acid cycle and oxidative phosphorylation in SMMC-7721 cells; accordingly, energy metabolism was mainly determined by glycolysis. In drug-resistant cells, a remarkable reduction in the inhibitory effects of α-KG on ATP synthase resulted in better coordination among the TCA cycle, oxidative phosphorylation, and glycolysis, providing novel potential strategies for clinical treatment of liver cancer resistance.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fosforilação Oxidativa/efeitos dos fármacos , Complexos de ATP Sintetase/antagonistas & inibidores , Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxiglucose/farmacologia , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Cetona Oxirredutases/antagonistas & inibidores , Cetona Oxirredutases/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Malatos/farmacologia , Metotrexato/farmacologia
13.
Molecules ; 22(5)2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28505136

RESUMO

Gubenyiliu II (GYII), a Traditional Chinese Medicine (TCM) formula used in our hospital, has shown beneficial effects in cancer patients. In this study, we investigated the molecular mechanisms underlying the beneficial effects of GYII on murine breast cancer models. GYII showed significant inhibitory effects on tumor growth and metastasis in the murine breast cancer model. Additionally, GYII suppressed the proliferation of 4T1 and MCF-7 cells in a dose-dependent manner. A better inhibitory effect on 4T1 cell proliferation and migration was found in the decomposed recipes (DR) of GYII. Moreover, heparanase expression and the degree of angiogenesis were reduced in tumor tissues. Western blot analysis showed decreased expression of heparanase and growth factors in the cells treated with GYII and its decomposed recipes (DR2 and DR3), and thereby a reduction in the phosphorylation of extracellular signal-regulated kinase (ERK) and serine-threonine kinase (AKT). These results suggest that GYII exerts anti-tumor growth and anti-metastatic effects in the murine breast cancer model. The anti-tumor activity of GYII and its decomposed recipes is, at least partly, associated with decreased heparanase and growth factor expression, which subsequently suppressed the activation of the ERK and AKT pathways.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Glucuronidase/metabolismo , Animais , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
PLoS One ; 19(7): e0301048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959261

RESUMO

Clearing out zombie firms is a critical challenge for both developed and developing countries. This article draws upon data from Chinese listed SOEs to examine the impact of mixed-ownership reform on zombie firms. The findings indicate that non-state-owned shareholders participating in mixed-ownership reform by appointing directors can help reduce the possibility of SOEs becoming zombie firms, while participating in mixed-ownership reform through shareholding is not significant. Moreover, the impact of mixed-ownership reform on zombie firms is more pronounced for firms in competitive industries and firms located in the eastern region of China. Mechanism analysis reveals that the reduction of inefficient investment has a positive mediating effect between mixed-ownership reform and zombie firms.

15.
Front Microbiol ; 15: 1345000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680912

RESUMO

Introduction: Abrus mollis Hance. (AM) is an important species used in southern Chinese medicine. It is mainly found in Guangdong and Guangxi provinces in China, and it is effective in the treatment of hepatitis. Endophytic bacteria are known to affect the growth and quality of medicinal plants. However, there are limited reports describing endophytic bacteria related to AM. Methods: In the present study, Illumina-based 16S rRNA gene sequencing was used to investigate the endophytic bacterial communities of root nodules of AM at five sampling sites in Guangxi. In addition, 179 strains of endophytic bacteria were isolated and categorized into 13 haplotypes based on recA sequence analysis. Results: The phylogeny of the 16S rRNA gene sequences revealed a predominance of nonrhizobial endophytes. Microbial diversity analysis showed that Proteobacteria was the dominant phylum in all samples, while Bradyrhizobium was the dominant genus in different samples. An efficient strain, Rhizobium tropici FM-19, was screened and obtained through greenhouse experiments. The AM plants inoculated with this strain showed the best growth performance and high nitrogen fixation and nodulation capacity. Notably, total phenols and total flavonoids, important active components in AM, increased by 30.9 and 42.7%, respectively, after inoculation with Rhizobium tropici FM-19. Discussion: This study provides insights into the complex microbial diversity of AM nodules and provides strain information for the efficient cultivation of AM.

16.
Front Public Health ; 12: 1377685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784575

RESUMO

Traditional environmental epidemiology has consistently focused on studying the impact of single exposures on specific health outcomes, considering concurrent exposures as variables to be controlled. However, with the continuous changes in environment, humans are increasingly facing more complex exposures to multi-pollutant mixtures. In this context, accurately assessing the impact of multi-pollutant mixtures on health has become a central concern in current environmental research. Simultaneously, the continuous development and optimization of statistical methods offer robust support for handling large datasets, strengthening the capability to conduct in-depth research on the effects of multiple exposures on health. In order to examine complicated exposure mixtures, we introduce commonly used statistical methods and their developments, such as weighted quantile sum, bayesian kernel machine regression, toxic equivalency analysis, and others. Delineating their applications, advantages, weaknesses, and interpretability of results. It also provides guidance for researchers involved in studying multi-pollutant mixtures, aiding them in selecting appropriate statistical methods and utilizing R software for more accurate and comprehensive assessments of the impact of multi-pollutant mixtures on human health.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Humanos , Teorema de Bayes , Modelos Estatísticos
17.
Environ Pollut ; 347: 123731, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458519

RESUMO

Bisphenol A (BPA), an ingredient in consumer products, has been suggested that it can interfere with bone development and maintenance, whereas the molecule mechanism remains unclear. The objective of this study is to investigate the effect of BPA on early bone differentiation and metabolism, and its potential molecule mechanism by employing hFOB1.19 cell as an in vitro model, as well as larval zebrafish as an in vivo model. The in vitro experiments indicated that BPA decreased cell viability, inhibited osteogenic activity (such as ALP, RUNX2), increased ROS production, upregulated transcriptional or protein levels of apoptosis-related molecules (such as Caspase 3, Caspase 9), while suppressed transcriptional or protein levels of pyroptosis-specific markers (TNF-α, TNF-ß, IL-1ß, ASC, Caspase 1, and GSDMD). Moreover, the evidences from in vivo model demonstrated that exposure to BPA distinctly disrupted pharyngeal cartilage, craniofacial bone development, and retarded bone mineralization. The transcriptional level of bone development-related genes (bmp2, dlx2a, runx2, and sp7), apoptosis-related genes (bcl2), and pyroptosis-related genes (cas1, nlrp3) were significantly altered after treating with BPA in zebrafish larvae. In summary, our study, combining in vitro and in vivo models, confirmed that BPA has detrimental effects on osteoblast activity and bone development. These effects may be due to the promotion of apoptosis, the initiation of oxidative stress, and the inhibition of pyroptosis.


Assuntos
Compostos Benzidrílicos , Subunidade alfa 1 de Fator de Ligação ao Core , Fenóis , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Estresse Oxidativo
18.
Sci Total Environ ; 920: 171014, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369163

RESUMO

With the rapid development of the economy, household activities have emerged as an important source of greenhouse gas (GHG) emissions, making them a crucial focal point for research in the pursuit of sustainable development and carbon emission reduction. Hulunber, as a typical steppe region in eastern Eurasia, is representative of studying the GHG emissions from household ranches, which are the basic production units in this region. In this paper, based on survey data of 2018 and 2019, we quantified and assessed GHG emissions from household ranches by combining life cycle assessment (LCA) and structural equation modeling (SEM) approaches, with LCA to define household ranches system boundary and SEM to determine the key driving factors of emissions. The results showed that GHG emissions of meat sheep live weight was 23.54 kg CO2-eq/kg. The major contributor to household GHG emissions was enteric methane (55.23 %), followed by coal use (20.80 %) and manure management systems (9.16 %), and other contributing factors (14.81 %). The SEM results indicated that the GHG emissions from household ranches were derived primarily by economic level, while the economic level was significantly affected by income. This study also found a significant positive and linear correlation between household GHG emissions and the number of meat sheep (R2 = 0.89, P < 0.001). The GHG emissions from meat sheep production (67.52 %) were double times greater than household livelihood consumption (32.48 %). These findings emphasized the importance of reducing emissions from meat sheep production and adjusting the energy mix of household livelihood, contributing to the establishment of a low-carbon household livelihood operation.


Assuntos
Gases de Efeito Estufa , Animais , Ovinos , Gases de Efeito Estufa/análise , Efeito Estufa , Pradaria , Carbono , Carne
19.
J Agric Food Chem ; 72(7): 3506-3519, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346922

RESUMO

Microbial secondary metabolites produced by Streptomyces have diverse application prospects in the control of plant diseases. Herein, the fermentation filtrate of Streptomyces SN40 effectively inhibited the infection of tobacco mosaic virus (TMV) in Nicotiana glutinosa and systemic infection of potato virus Y (PVY) in Nicotiana benthamiana. Additionally, metabolomic analysis indicated that anisomycin (C14H19NO4) and trans-3-indoleacrylic acid (C11H9NO2) were highly abundant in the crude extract and that anisomycin effectively suppressed the infection of TMV as well as PVY. Subsequently, transcriptomic analysis was conducted to elucidate its mechanisms on the induction of host defense responses. Furthermore, the results of molecular docking suggested that anisomycin can potentially bind with the helicase domain (Hel) of TMV replicase, TMV coat protein (CP), and PVY helper component proteinase (HC-Pro). This study demonstrates new functions of anisomycin in virus inhibition and provides important theoretical significance for the development of new biological pesticides to control diverse plant viruses.


Assuntos
Potyvirus , Streptomyces , Vírus do Mosaico do Tabaco , Anisomicina , Simulação de Acoplamento Molecular , Vírus do Mosaico do Tabaco/genética , Streptomyces/genética , Antivirais/farmacologia , Doenças das Plantas
20.
Int J Biol Macromol ; 265(Pt 2): 130961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508558

RESUMO

Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Doenças Metabólicas , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Metabolismo dos Lipídeos , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA