RESUMO
Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm+) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm+ can induce the Zn2+ flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn2+ and direct the lateral diffusion, thus effectively avoiding the local Zn2+ accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm-2 over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g-1 and maintain a capacity of up to 12 mAh.
RESUMO
The application of thermodynamically more favorable sulfur oxidation reaction (SOR) to replace oxygen evolution reaction (OER) in electrocatalytic water electrolysis is an appealing strategy to achieve low-energy hydrogen production while removing toxic sulfur ions from wastewater. However, the study of SOR catalysts with both activity and stability still faces great challenges. Herein, this study prepares partially amorphous Ru-doped CoSe (pa-Ru-CoSe) nanoparticles for SOR. The doping of Ru keeps Co in an electron-deficient state, which enhances the adsorption of SOR intermediates and improves the catalytic activity. Meanwhile, the partially amorphous selenide possesses great corrosion resistance to sulfur species, thus ensuring stability in long-term SOR. In addition, the pa-Ru-CoSe requires only 0.566 V to reach a current density of 100 mA cm-2 in the SOR-HER coupled system and remains stable for 200 h. This work provides a promising partially amorphous strategy for SOR catalysts with both catalytic activity and long-term stability, enabling hydrogen production with low energy consumption and simultaneous sulfur production.
RESUMO
Amidst the escalating quest for clean energy, the hydrogen evolution reaction (HER) in acidic conditions has taken center stage, catalyzing the search for advanced electrocatalysts. The efficacy of these materials is predominantly dictated by the active site density on their surfaces. The propensity is leveraged for monolayer architectures to introduce defects, enhancing surface area, and increasing active sites. Doping enhances defects and fine-tunes catalyst activity. In this vein, defect-enriched monolayer nanosheets doped with nickel and a trace amount of ruthenium in VS2 (SL-Ni-Ru-VS2) are engineered and characterized. Evaluation in 0.5 m H2SO4 solution unveils that the catalyst achieves overpotentials as low as 20 and 41 mV at current densities of -10 and -100 mA cmâ»2. Impressively, the catalyst maintains a mass activity of 13.08 A mg⻹Ru, even with minimal Ru incorporation, indicating exceptional catalytic efficiency. This monolayer catalyst sustains its high activity at lower overpotentials, demonstrating its practical applicability. The comprehensive analysis, which combines experimental data and computational simulations, indicates that the co-doping of Ni and Ru enhances the electrocatalytic properties of VS2. This research offers a strategic framework for crafting cutting-edge electrocatalysts specifically designed for enhanced performance in the HER.
RESUMO
Large-scale deployment of proton exchange membranes water electrolysis (PEM-WE) requires a substantial reduction in usage of platinum group metals (PGMs) as indispensable electrocatalyst for cathodic hydrogen evolution reaction (HER). Ultra-fine PGMs nanocatalysts possess abundant catalytic sites at lower loading, but usually exhibit reduced stability in long-term operations under corrosive acidic environments. Here we report grafting the ultra-fine PtRu crystalline nanoalloys with PtxRuySez "amorphous skin" (c-PtRu@a-PtxRuySez) by in situ atomic layer selenation to simultaneously improve catalytic activity and stability. We found that the c-PtRu@a-PtxRuySez-1 with ~0.6â nm thickness amorphous skin achieved an ultra-high mass activity of 26.7â A mg-1 Pt+Ru at -0.07â V as well as a state-of-the-art durability maintained for at least 1000â h at -10â mA cm-2 and 550â h at -100â mAâ cm-2 for acid HER. Experimental and theoretical investigations suggested that the amorphous skin not only improved the electrochemical accessibility of the catalyst surface and increasing the intrinsic activity of the catalytic sites, but also mitigated the dissolution/diffusion of the active species, thus resulting in improved catalytic activity and stability under acidic electrolyte. This work demonstrates a direction of designing ultra-fine PGMs electrocatalysts both with high utilization and robust durability, offers an in situ "amorphous skin" engineering strategy.
RESUMO
Noble metal doping can achieve an increase in mass activity (MA) without sacrificing catalysis efficiency and stability, so that alkaline hydrogen evolution reaction (HER) performance of the catalyst can be optimized to the maximum degree. However, its excessively large ionic radius makes it difficult to achieve either interstitial doping or substitutional doping under mild conditions. Herein, a hierarchical nanostructured electrocatalyst with enriched amorphous/crystalline interfaces for high-efficiency alkaline HER is reported, which is composed of amorphous/crystalline (Co, Ni)11 (HPO3 )8 (OH)6 homogeneous hierarchical structure with an ultra-low doped Pt (Pt-a/c-NiHPi). Benefiting from the structural flexibility of the amorphous component, extremely low Pt (0.21 wt.%, totally 3.31 µg Pt on 1 cm-2 NF) are stably doped on it via a simple two-phase hydrothermal method. The DFT calculations show that due to the strongly electron transfer between the crystalline/amorphous components at the interfaces, electrons finally concentrate toward Pt and Ni in the amorphous components, thus the electrocatalyst has near-optimal energy barriers and adsorption energy for H2 O* and H* . With the above benefits, the obtained catalyst exhibits an exceptionally high MA (39.1 mA µg-1 Pt ) at 70 mV, which is almost the highest level among the reported Pt-based electrocatalysts for alkaline HER.
RESUMO
The rational design of efficient and cost-effective electrocatalysts for oxygen evolution reaction (OER) with sluggish kinetics, is imperative to diverse clean energy technologies. The performance of electrocatalyst is usually governed by the number of active sites on the surface. Crystalline/amorphous heterostructure has exhibited unique properties and opens new paradigms toward designing electrocatalysts with abundant active sites for improved performance. Hence, Fe doped Ni-Co phosphite (Fe-NiCoHPi) electrocatalyst with cauliflower-like structure, comprising crystalline@amorphous core-shell nanorod, is reported. The experiments uncover that Fe is enriched in the amorphous shell due to the flexibility of the amorphous component. Further density functional theory calculations indicate that the strong electronic interaction between the enriched Fe in the amorphous shell and crystalline core host at the core-shell interface, leads to balanced binding energies of OER intermediates, which is the origin of the catalyst-activity. Eventually, the Fe-NiCoHPi exhibits remarkable activity, with low overpotentials of only 206 and 257 mV at current density of 15 and 100 mA cm-2 . Unceasing durability over 90 h is achieved, which is superior to the effective phosphate electrocatalysts. Although the applications at high current remain challenges , this work provides an approach for designing advanced OER electrocatalysts for sustainable energy devices.
RESUMO
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is important for hydrogen economy but suffers from sluggish reaction kinetics due to a large water dissociation energy barrier. Herein, Pt5 P2 nanocrystals anchoring on amorphous nickel phosphate nanorods as a high-performance interfacial electrocatalyst system (Pt5 P2 NCs/a-NiPi) for the alkaline HER are demonstrated. At the unique polycrystalline/amorphous interface with abundant defects, strong electronic interaction, and optimized intermediate adsorption strength, water dissociation is accelerated over abundant oxophilic Ni sites of amorphous NiPi, while hydride coupling is promoted on the adjacent electron-rich Pt sites of Pt5 P2 . Meanwhile, the ultra-small-sized Pt5 P2 nanocrystals and amorphous NiPi nanorods maximize the density of interfacial active sites for the Volmer-Tafel reaction. Pt5 P2 NCs/a-NiPi exhibits small overpotentials of merely 9 and 41 mV at -10 and -100 mA cm-2 in 1 M KOH, respectively. Notably, Pt5 P2 NCs/a-NiPi exhibits an unprecedentedly high mass activity (MA) of 14.9 mA µgPt -1 at an overpotential of 70 mV, which is 80 times higher than that of Pt/C and represents the highest MA of reported Pt-based electrocatalysts for the alkaline HER. This work demonstrates a phosphorization and interfacing strategy for promoting Pt utilization and in-depth mechanistic insights for the alkaline HER.
RESUMO
Domesticated citrus varieties are woody perennials and interspecific hybrid crops of global economic and nutritional importance. The citrus fruit "hesperidium" is a unique morphological innovation not found in any other plant lineage. Efforts to improve the nutritional quality of the fruit are predicated on understanding the underlying regulatory mechanisms responsible for fruit development, including temporal control of chlorophyll degradation and carotenoid biosynthesis. Here, we investigated the molecular basis of the navel orange (Citrus sinensis) brown flavedo mutation, which conditions flavedo that is brown instead of orange. To overcome the limitations of using traditional genetic approaches in citrus and other woody perennials, we developed a strategy to elucidate the underlying genetic lesion. We used a multi-omics approach to collect data from several genetic sources and plant chimeras to successfully decipher this mutation. The multi-omics strategy applied here will be valuable in driving future gene discovery efforts in citrus as well as in other woody perennial plants. The comparison of transcriptomic and genomic data from multiple genotypes and plant sectors revealed an underlying lesion in the gene encoding STAY-GREEN (SGR) protein, which simultaneously regulates carotenoid biosynthesis and chlorophyll degradation. However, unlike SGR of other plant species, we found that the carotenoid and chlorophyll regulatory activities could be uncoupled in the case of certain SGR alleles in citrus and thus we propose a model for the molecular mechanism underlying the brown flavedo phenotype. The economic and nutritional value of citrus makes these findings of wide interest. The strategy implemented, and the results obtained, constitute an advance for agro-industry by driving opportunities for citrus crop improvement.
Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismoRESUMO
Design of hollow nanostructure and controllable phase of mixed metal oxides for improving performance in supercapacitor applications is highly desirable. Here we demonstrate the rational design and synthesis of Mn3-x Fex O4 hollow nanostructures for supercapacitor applications. Owing to high porosity and the specific surface area that provides more active sites for electrochemical reactions, the electrochemical performance of Mn3-x Fex O4 hollow nanostructure substantially enhanced comparing with pristine Mn3 O4 . Particularly, in 1.0â M KOH electrolyte, Mn0.16 Fe2.84 O4 with a typical diameter of 20â nm exhibits excellent specific capacitance of 2675, 2320, 1662, 987â F g-1 at current densities of 1, 2, 5, 10â A g-1 , respectively, which is significantly superior to those of other transition metal oxides. Besides, an asymmetric supercapacitor is assembled by using Mn0.16 Fe2.84 O4 and activated carbon as a positive and a negative electrode, respectively. Electrochemical results indicate a high energy density of 42â Wh kg-1 at a power density of 0.75â kW kg-1 , which makes this hollow nanostructure a highly promising electrode for achieving high-performance next-generation supercapacitors.
RESUMO
Nanostructured lipid carriers (NLC) have become a research hotspot, wherein cancer-targeting effects are enhanced and side effects of chemotherapy are overcome. Usually, accelerated blood clearance (ABC) occurs after repeated injections, without changing the immunologic profile, despite PEGylation which prolongs the circulation function. To overcome these problems, we designed a red blood cell-membrane-coated NLC (RBCm-NLC), which was round-like, with a particle size of 60.33 ± 3.04 nm and a core-shell structure. Its stability was good, the drug paclitaxel (PTX) release from RBCm-PTX-NLC was less than 30% at pH7.4 and pH6.5, and the integrity of RBC membrane surface protein was maintained before and after preparation. Additionally, in vitro assays showed that, with the RBCm coating, the cellular uptake of the NLC by cancer cells was significantly enhanced. RBCm-NLC can avoid recognition by macrophage cells and prolong circulation time in vivo. In S180 tumor-bearing mice, the DiR-labeled RBCm-NLC group showed a stronger fluorescence signal and longer retention in tumor tissues, indicating a prompt tumor-targeting effect and extended blood circulation. Importantly, RBCm-PTX-NLC enhanced the antitumor effect and extended the survival period significantly in vivo. In summary, biomimetic NLC offered a novel strategy for drug delivery in cancer therapy.
Assuntos
Antineoplásicos/síntese química , Materiais Biomiméticos/síntese química , Biomimética/métodos , Portadores de Fármacos/síntese química , Nanoestruturas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Lipídeos , Masculino , Camundongos , Nanoestruturas/administração & dosagem , Células RAW 264.7 , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Sensors capable of detecting different types of biomolecules have widespread applications in the field of biomedical research, but despite many years of research, the development of biosensors suitable for point-of-care (POC) applications in resource-limited areas is still extremely challenging. Sensors based on photonic crystal hydrogels (PCHs) hold much promise in this regard because of their numerous advantages over other existing bioanalytical methods. All current PCH biosensors are however restricted in the types of analytes they can detect sensitively with good selectivity. By taking advantage of the powerful and ubiquitous antibody-antigen interaction, we report herein the first-ever competition-based PCH biosensors capable of naked-eye detection of various biomolecules (e.g., proteins, peptides, and small molecules) with high sensitivity and selectivity and minimal background and excellent reversibility. We showed such PCH designs could be extended to the fabrication of different enzyme-detecting biosensors. The universal feature of these novel biosensors thus enables future development of POC biosensors in disease diagnostics for other bioanalytes.
Assuntos
Técnicas Biossensoriais , Fótons , Polímeros/química , Semicondutores , Energia Solar , Cristalização , Imidas/química , Luminescência , Naftalenos/química , Espalhamento de Radiação , Espectrofotometria UltravioletaRESUMO
BACKGROUND: Interleukin-1ß (IL-1ß) plays a crucial role in cartilage degeneration by inducing inflammatory cascades in chondrocytes, impairing their normal biological functions. Long non-coding RNA NKILA (lncRNA NKILA) has been implicated in osteoarthritis (OA), but its specific molecular mechanisms remain unclear. This study aims to elucidate the function and molecular regulatory mechanism of lncRNA NKILA in articular chondrocytes under IL-1ß stimulation. METHODS: Primary human articular chondrocytes were cultured to investigate the effects of IL-1ß on chondrocyte proliferation, apoptosis, and extracellular matrix metabolism. We employed Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR), western blot, flow cytometry, immunofluorescence, and nuclear mass separation assays to explore the interaction between lncRNA NKILA and the NFκB signaling pathway. Additionally, animal experiments were conducted to evaluate the therapeutic potential of modulating lncRNA NKILA expression in vivo. RESULTS: IL-1ß treatment led to decreased chondrocyte proliferation and increased apoptosis. Our study demonstrated that IL-1ß downregulates lncRNA NKILA, which weakens its inhibitory effect on the NFκB (Nuclear Factor Kappa B) signaling pathway. This downregulation results in increased NFκB activity and exacerbates chondrocyte degeneration. Notably, the upregulation of lncRNA NKILA significantly alleviated OA symptoms, indicating that NKILA could be a promising therapeutic target. CONCLUSION: IL-1ß reduces lncRNA NKILA expression, weakening its inhibition of NFκB signaling and promoting articular chondrocyte degeneration. Enhancing lncRNA NKILA expression offers a promising approach to mitigating OA, suggesting that NKILA could serve as a potential therapeutic target for OA treatment.
RESUMO
The design and synthesis of oxygen evolution reaction (OER) electrocatalysts that operate efficiently and stably under acidic conditions are important for the preparation of green hydrogen energy. The low intrinsic catalytic activity and poor acid resistance of commercial RuO2 limit its further development, and the construction of heterointerface structures is the most promising strategy to break through the intrinsic activity limitation of electrocatalysts. Herein, we synthesized spherical and oxygen vacancy-rich heterointerface MnO2/RuO2 using morphology control, which promoted the kinetics of the oxygen evolution reaction with the interaction between oxygen vacancies and the oxide heterointerface. MnO2/RuO2 was reported to be an acidic OER catalyst with excellent performance and stability, requiring only an ultra-low overpotential of 181 mV in 0.5 M H2SO4 to achieve a current density of 10 mA cm-2. The catalyst activity remained essentially unchanged in a 140 h stability test with an ultra-high mass activity (858.9 A g-1@ 1.5 V), which was far superior to commercial RuO2 and most previously reported noble metal-based acidic OER catalysts. The experimental results showed that the effect of more oxygen vacancies and the heterointerfaces of manganese ruthenium oxides broke the intrinsic activity limitation, provided more active sites for the OER, accelerated reaction kinetics, and improved the stability of the catalyst. The excellent performance of the catalyst suggests that MnO2/RuO2 provides a new idea for the design and study of heterointerfaces in metal oxide nanomaterials.
RESUMO
Phytoplankton face numerous pressures resulting from chemical and physical stressors, primarily induced by human activities. This study focuses on investigating the interactive effects of widely used antifouling agent Irgarol 1051 and UV radiation on the photo-physiology of marine diatoms from diverse latitudes, within the context of global warming. Our findings clearly shown that both Irgarol and UV radiation have a significant inhibitory impact on the photochemical performance of the three diatoms examined, with Irgarol treatment exhibiting more pronounced effects. In the case of the two temperate zone diatoms, we observed a decrease in the inhibition induced by Irgarol 1051 and UVR as the temperature increased up to 25°C. Similarly, for the subarctic species, an increase in temperature resulted in a reduction in the inhibition caused by Irgarol and UVR. These results suggest that elevated temperatures can mitigate the short-term inhibitory effects of both Irgarol and UVR on diatoms. Furthermore, our data indicate that increased temperature could significantly interact with UVR or Irgarol for temperate diatoms, while this was not the case for cold water diatoms, indicating temperate and subarctic diatoms may respond differentially under global warming.
Assuntos
Diatomáceas , Triazinas , Humanos , Diatomáceas/fisiologia , Raios Ultravioleta , Temperatura , Fitoplâncton/fisiologiaRESUMO
Under global change scenarios, the sea surface temperature is increasing steadily along with other changes to oceanic environments. Consequently, marine diatoms are influenced by multiple ocean global change drivers. We hypothesized that temperature rise mediates the responses of polar and temperate diatoms to UV radiation (UVR) to different extents, and exposed the temperate centric diatoms, Thalassiosira weissflogii and Skeletonema costatum, and a polar pennate diatom Entomoneis sp., to warming (+5°C) for 10 days, then performed short-term incubations under different radiation treatments with or without UVR. The effective quantum yields of the three diatoms were stable during exposure to PAR, but decreased when exposed to PAR + UVR, leading to significant UV-induced inhibition, which was 3% and 9%, respectively, for T. weissflogii and S. costatum under ambient temperature but increased to 12% and 17%, respectively, in the cells acclimated to the warming treatment. In contrast, UVR induced much higher inhibition, by about 45%, in the polar diatom Entomoneis sp. at ambient temperature, and the warming treatment alleviated the UV-induced inhibition, which dropped to 36%. The growth rates were significantly inhibited by UVR in S. costatum under the warming treatment and in Entomoneis sp. under ambient temperature, while there was no significant effect for T. weissflogii. Our results indicate that the polar diatom was more sensitive to UVR though warming could alleviate its impact, whereas the temperate diatoms were less sensitive to UVR but warming exacerbated its impacts, implying that diatoms living in different regions may exhibit differential responses to global changes.
Assuntos
Diatomáceas , Raios Ultravioleta , Fotossíntese/efeitos da radiação , Oceanos e Mares , TemperaturaRESUMO
'Zong Cheng' navel orange (ZC) is a brown mutant of Lane Late navel orange (LL) and emits a more pleasant odor than that of LL. However, the key volatile compound of this aroma and underlying mechanism remains unclear. In this study, sensory evaluations and volatile profiling were performed throughout fruit development to identify significant differences in sensory perception and metabolites between LL and ZC. It revealed that the sesquiterpene content varied significantly between ZC and LL. Based on aroma extract dilution and gas chromatography-olfactometry analyses, the volatile compound leading to the background aroma of LL and ZC is d-limonene, the orange note in LL was mainly attributed to octanal, whilst valencene, ß-myrcene, and (E)-ß-ocimene presented balsamic, sweet, and herb notes in ZC. Furthermore, Cs5g12900 and six potential transcription factors were identified as responsible for valencene accumulation in ZC, which is important for enhancing the aroma of ZC.
Assuntos
Citrus sinensis , Citrus , Sesquiterpenos , Compostos Orgânicos Voláteis , Citrus sinensis/genética , Odorantes/análise , Multiômica , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análiseRESUMO
Inspired by the way many living organisms utilize chemical/biological reactions to regulate their skin and respond to stimuli in the external environment, we have developed a self-regulating hydrogel design by incorporating chemical reaction networks (CRNs) into biomimetic photonic crystal hydrogels. In this hydrogel system, we used host-guest supramolecular non-covalent bonds between beta-cyclodextrin (ß-CD) and ferrocene (Fc) as partial crosslinkers and designed a CRN involving enzyme-fuel couples of horseradish peroxidase (HRP)/H2O2 and glucose oxidase (GOD)/d-glucose, by which the responsive hydrogel was transformed into a glucose-driven self-regulating hydrogel. Due to the biomimetic structural color in the hydrogel, the progress of the chemical reaction was accompanied by a change in the color of the hydrogel. Based on this principle, the designed supramolecular photonic hydrogel (SPH) can not only achieve naked-eye detection of H2O2 and glucose concentrations with the assistance of a smartphone but also monitor the reactions of HRP and GOD enzymes and determine their activity parameters. The sensitivity and stability of the sensor have been proven. In addition, due to the reversibility of the chemical reaction network, the sensor can be reused, thus having the potential to serve as a low-cost point-of-care sensor. The SPH was ultimately used to detect glucose in human plasma and H2O2 in liver tumor tissue. The results are comparable with commercial assay kits. By redesigning the chemical reaction network in the hydrogel, it is expected to be used for detecting other enzymes or fuels.
Assuntos
Biocombustíveis , Hidrogéis , Humanos , Hidrogéis/química , Peróxido de Hidrogênio/química , Peroxidase do Rábano Silvestre/química , Glucose Oxidase/química , GlucoseRESUMO
Glucagon-like peptide-1 (GLP-1) is mainly secreted by preproglucagon neurons; it plays important roles in modulating neuronal activity and synaptic transmission through its receptors. In the present study, we investigated the effects of GLP-1 on parallel fiber-Purkinje cell (PF-PC) synaptic transmission in mouse cerebellar slices using whole-cell patch-clamp recording and pharmacology methods. In the presence of a γ-aminobutyric acid type A receptor antagonist, bath application of GLP-1 (100 nM) enhanced PF-PC synaptic transmission, with an increased amplitude of evoked excitatory postsynaptic synaptic currents (EPSCs) and a decreased paired-pulse ratio. The GLP-1-induced enhancement of evoked EPSCs was abolished by a selective GLP-1 receptor antagonist, exendin 9-39, as well as by the extracellular application of a specific protein kinase A (PKA) inhibitor, KT5720. In contrast, inhibiting postsynaptic PKA with a protein kinase inhibitor peptide-containing internal solution failed to block the GLP-1-induced enhancement of evoked EPSCs. In the presence of a mixture of gabazine (20 µM) and tetrodotoxin (1 µM), application GLP-1 significantly increased frequency, but not amplitude of miniature EPSCs via PKA signaling pathway. The GLP-1-induced increase in miniature EPSC frequency was blocked by both exendin 9-39 and KT5720. Together, our results indicate that GLP-1 receptor activation enhances glutamate release at PF-PC synapses via the PKA signaling pathway, resulting in enhanced PF-PC synaptic transmission in mice in vitro. These findings suggest that, in living animals, GLP-1 has a critical role in the modulation of cerebellar function by regulating excitatory synaptic transmission at PF-PC synapses.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
For photoelectrochemical (PEC) water splitting, constructing heterojunctions and loading co-catalysts are effective means to realizing sufficient light absorption, effective photogenerated carrier separation and fast charge transport. However, during implementation, the PEC performance of the catalyst is affected by both parasitic light absorption and reflection and the change in energy band structure due to the creation of new interfaces. Herein, in order to minimize the effect of recombination of photogenerated electron-hole pairs on the catalyst PEC performance due to the nascent interface arising from the co-catalyst compounding, WO3 and Ni/Co co-doped LaFeO3 (LFO) are constructed as heterojunctions, in which NiCo-LFO acts both as a part of the heterojunction to enhance photogenerated carrier separation and a co-catalyst to enhance the conductivity and modulate the surface state density at the catalyst-electrolyte interface. The current density of NiCo-LFO/WO3 reaches 3.92 mA cm-2, which is more than 7 times that of LFO/WO3. This work provides a reference for the efficient water splitting of B-site doped, especially the co-doped perovskite oxide as multifunctional roles integrated with conventional photoelectrodes.
RESUMO
Glucagon-like peptide-1 (GLP-1) is mainly secreted by preglucagonergic neurons in the nucleus tractus solitarius, which plays critical roles in regulation of neuronal activity in the central nervous system through its receptor. In the cerebellar cortex, GLP-1 receptor is abundantly expressed in the molecular layer, Purkinje cell (PC) layer and granular layer, indicating that GLP-1 may modulate the cerebellar neuronal activity. In this study, we investigated the mechanism by which GLP1 modulates mouse cerebellar PC activity in vitro. After blockade of glutamatergic and GABAergic synaptic transmission in PCs, GLP1 increased the spike firing rate accompanied by depolarization of membrane potential and significantly depressed the after-hyperpolarizing potential and outward rectifying current of spike firing discharges via GLP1 receptors. In the presence of TTX and Ba2+, GLP1 significantly enhanced the hyperpolarized membrane potential-evoked instant current, steady current, tail current (I-tail) and hyperpolarization-activated (IH) current. Application of a selective IH channel antagonist, ZD7288, blocked IH and abolished the effect of GLP1 on PC membrane currents. The GLP1 induced enhancement of membrane currents was also abolished by a selective GLP1 receptor antagonist, exendin-9-39, as well as by protein kinase A (PKA) inhibitors, KT5720 and H89. In addition, immunofluorescence detected GLP1 receptor in the mouse cerebellar cortex, mostly in PCs. These results indicated that GLP1 receptor activation enhanced IH channel activity via PKA signaling, resulting in increased excitability of mouse cerebellar PCs in vitro. The present findings indicate that GLP1 plays a critical role in modulating cerebellar function by regulating the spike firing activity of mouse cerebellar PCs.