Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Crit Rev Microbiol ; : 1-18, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091137

RESUMO

Frequent viral infections leading to infectious disease outbreaks have become a significant global health concern. Fully elucidating the molecular mechanisms of the immune response against viral infections is crucial for epidemic prevention and control. The innate immune response, the host's primary defense against viral infection, plays a pivotal role and has become a breakthrough in research mechanisms. A component of the innate immune system, damage-associated molecular patterns (DAMPs) are involved in inducing inflammatory responses to viral infections. Numerous DAMPs are released from virally infected cells, activating downstream signaling pathways via internal and external receptors on immune cells. This activation triggers immune responses and helps regulate viral host invasion. This review examines the immune regulatory mechanisms of various DAMPs, such as the S100 protein family, high mobility group box 1 (HMGB1), and heat shock proteins, in various viral infections to provide a theoretical basis for designing novel antiviral drugs.

2.
Exp Cell Res ; 426(1): 113552, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914061

RESUMO

It is recognized that the cerebral ischemia/reperfusion (I/R) injury triggers inflammatory activation of microglia and supports microglia-driven neuronal damage. Our previous studies have shown that ginsenoside Rg1 had a significant protective effect on focal cerebral I/R injury in middle cerebral artery occlusion (MCAO) rats. However, the mechanism still needs further clarification. Here, we firstly reported that ginsenoside Rg1 effectively suppressed the inflammatory activation of brain microglia cells under I/R conditions depending on the inhibition of Toll-likereceptor4 (TLR4) proteins. In vivo experiments showed that the ginsenoside Rg1 administration could significantly improve the cognitive function of MCAO rats, and in vitro experimental data showed that ginsenoside Rg1 significantly alleviated neuronal damage via inhibiting the inflammatory response in microglia cells co-cultured under oxygen and glucose deprivation/reoxygenation (OGD/R) condition in gradient dependent. The mechanism study showed that the effect of ginsenoside Rg1 depends on the suppression of TLR4/MyD88/NF-κB and TLR4/TRIF/IRF-3 pathways in microglia cells. In a word, our research shows that ginsenoside Rg1 has great application potential in attenuating the cerebral I/R injury by targeting TLR4 protein in the microglia cells.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Fármacos Neuroprotetores/farmacologia , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
3.
PLoS Genet ; 17(2): e1009351, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33606681

RESUMO

Cellulase production in filamentous fungus Trichoderma reesei is highly responsive to various environmental cues involving multiple positive and negative regulators. XYR1 (Xylanase regulator 1) has been identified as the key transcriptional activator of cellulase gene expression in T. reesei. However, the precise mechanism by which XYR1 achieves transcriptional activation of cellulase genes is still not fully understood. Here, we identified the TrCYC8/TUP1 complex as a novel coactivator for XYR1 in T. reesei. CYC8/TUP1 is the first identified transcriptional corepressor complex mediating repression of diverse genes in Saccharomyces cerevisiae. Knockdown of Trcyc8 or Trtup1 resulted in markedly impaired cellulase gene expression in T. reesei. We found that TrCYC8/TUP1 was recruited to cellulase gene promoters upon cellulose induction and this recruitment is dependent on XYR1. We further observed that repressed Trtup1 or Trcyc8 expression caused a strong defect in XYR1 occupancy and loss of histone H4 at cellulase gene promoters. The defects in XYR1 binding and transcriptional activation of target genes in Trtup1 or Trcyc8 repressed cells could not be overcome by XYR1 overexpression. Our results reveal a novel coactivator function for TrCYC8/TUP1 at the level of activator binding, and suggest a mechanism in which interdependent recruitment of XYR1 and TrCYC8/TUP1 to cellulase gene promoters represents an important regulatory circuit in ensuring the induced cellulase gene expression. These findings thus contribute to unveiling the intricate regulatory mechanism underlying XYR1-mediated cellulase gene activation and also provide an important clue that will help further improve cellulase production by T. reesei.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hypocreales/genética , Regiões Promotoras Genéticas/genética , Transativadores/genética , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Técnicas de Silenciamento de Genes , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Filogenia , Ligação Proteica/genética , Transativadores/metabolismo , Ativação Transcricional
4.
PLoS Genet ; 16(9): e1008979, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32877410

RESUMO

The ascomycete Trichoderma reesei is a highly prolific cellulase producer. While XYR1 (Xylanase regulator 1) has been firmly established to be the master activator of cellulase gene expression in T. reesei, its precise transcriptional activation mechanism remains poorly understood. In the present study, TrGAL11, a component of the Mediator tail module, was identified as a putative interacting partner of XYR1. Deletion of Trgal11 markedly impaired the induced expression of most (hemi)cellulase genes, but not that of the major ß-glucosidase encoding genes. This differential involvement of TrGAL11 in the full induction of cellulase genes was reflected by the RNA polymerase II (Pol II) recruitment on their core promoters, indicating that TrGAL11 was required for the efficient transcriptional initiation of the majority of cellulase genes. In addition, we found that TrGAL11 recruitment to cellulase gene promoters largely occurred in an XYR1-dependent manner. Although xyr1 expression was significantly tuned down without TrGAL11, the binding of XYR1 to cellulase gene promoters did not entail TrGAL11. These results indicate that TrGAL11 represents a direct in vivo target of XYR1 and may play a critical role in contributing to Mediator and the following RNA Pol II recruitment to ensure the induced cellulase gene expression.


Assuntos
Celulase/genética , Complexo Mediador/genética , Trichoderma/genética , Celulase/biossíntese , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Expressão Gênica , Complexo Mediador/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/genética , RNA Polimerase II/genética , Transativadores , Fatores de Transcrição/genética , Trichoderma/metabolismo , Xilanos/metabolismo
5.
Mol Microbiol ; 112(4): 1145-1162, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31309604

RESUMO

Cellulase gene expression in Trichoderma reesei is highly responsive to environmental cues and is under stringent regulation by multiple transcription factors. XYR1 (Xylanase regulator 1) has been identified as the most important transcriptional activator of cellulase/hemicellulase gene expression although the precise transactivating mechanism remains largely elusive. Here we show that the activation domain of XYR1 interacts with the T. reesei homolog of the TrSNF12 subunit of SWI/SNF complex. Deletion of Trsnf12 markedly impaired the induced cellulase gene expression. Individual loss of other SWI/SNF subunits including the catalytic subunit also severely compromised cellulase gene expression and interfered with loss of histone H4 in the cbh1 and eg1 promoters upon cellulose induction. In addition, we find that the SWI/SNF occupancy on cellulase gene promoters strictly required XYR1 and TrSNF12 but TrSNF12 was dispensable for the XYR1 binding to these promoters. These data suggest a model in which XYR1 recruits SWI/SNF through direct interactions with TrSNF12 to remodel chromatin at cellulase gene promoters, thereby activating cellulase gene expression to initiate the cellulolytic response in T. reesei.


Assuntos
Celulase/genética , Trichoderma/genética , Celulose/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Trichoderma/metabolismo
6.
Am J Physiol Endocrinol Metab ; 317(2): E194-E199, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31013145

RESUMO

Positron emission tomography (PET) radiopharmaceuticals can noninvasively measure free fatty acid (FFA) uptake into adipose tissue. We studied 29 volunteers to test whether abdominal and femoral subcutaneous adipose tissue FFA uptake measured using [1-11C]palmitate PET agrees with FFA storage rates measured using an intravenous bolus of [1-14C]palmitate and adipose biopsies. The dynamic left ventricular cavity PET images combined with blood sample radioactivity corrected for the 11CO2 content were used to create the blood time activity curve (TAC), and the constant (Ki) was determined using Patlak analysis of the TACs generated for regions of interest in abdominal subcutaneous fat. These data were used to calculate palmitate uptake rates in abdominal subcutaneous adipose tissue (µmol·kg-1·min-1). Immediately after the dynamic imaging, a static image of the thigh was taken to measure the standardized uptake value (SUV) in thigh adipose tissue, which was scaled to each participant's abdominal adipose tissue SUV to calculate thigh adipose palmitate uptake rates. Abdominal adipose palmitate uptake using PET [1-11C]palmitate was correlated with, but significantly (P < 0.001) greater than, FFA storage measured using [1-14C]palmitate and adipose biopsy. Thigh adipose palmitate measured using PET calculation was positively correlated (R2 = 0.44, P < 0.0001) with and not different from the biopsy approach. The relative differences between PET measured abdominal subcutaneous adipose tissue palmitate uptake and biopsy-measured palmitate storage were positively correlated (P = 0.03) with abdominal subcutaneous fat. We conclude that abdominal adipose tissue FFA uptake measured using PET does not equate to adipose FFA storage measured using biopsy techniques.


Assuntos
Tecido Adiposo/patologia , Ácidos Graxos não Esterificados/farmacocinética , Tomografia por Emissão de Pósitrons , Gordura Subcutânea/diagnóstico por imagem , Gordura Subcutânea/metabolismo , Tecido Adiposo/diagnóstico por imagem , Adiposidade/fisiologia , Adulto , Biópsia , Distribuição da Gordura Corporal/métodos , Índice de Massa Corporal , Isótopos de Carbono/análise , Isótopos de Carbono/farmacocinética , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/farmacocinética , Feminino , Humanos , Peso Corporal Ideal/fisiologia , Lipólise/fisiologia , Masculino , Obesidade/metabolismo , Obesidade/patologia , Sobrepeso/metabolismo , Sobrepeso/patologia , Ácido Palmítico/química , Ácido Palmítico/farmacocinética , Tomografia por Emissão de Pósitrons/métodos
7.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585995

RESUMO

Alkylpyrazines are important contributors to the flavor of traditional fermented foods. Here, we studied the synthesis mechanisms of 2,5-dimethylpyrazine (2,5-DMP) and 2,3,5-trimethylpyrazine (TMP). Substrate addition, whole-cell catalysis, stable isotope tracing experiments, and gene manipulation revealed that l-threonine is the starting point involving l-threonine-3-dehydrogenase (TDH) and three uncatalyzed reactions to form 2,5-DMP. TDH catalyzes the oxidation of l-threonine. The product of this reaction is l-2-amino-acetoacetate, which is known to be unstable and can decarboxylate to form aminoacetone. It is proposed that aminoacetone spontaneously converts to 2,5-DMP in a pH-dependent reaction, via 3,6-dihydro-2,5-DMP. 2-Amino-3-ketobutyrate coenzyme A (CoA) ligase (KBL) catalyzes the cleavage of l-2-amino-acetoacetate, the product of TDH, into glycine and acetyl-CoA in the presence of CoA. Inactivation of KBL could improve the production of 2,5-DMP. Besides 2,5-DMP, TMP can also be generated by Bacillus subtilis 168 by using l-threonine and d-glucose as the substrates and TDH as the catalytic enzyme.IMPORTANCE Despite alkylpyrazines' contribution to flavor and their commercial value, the synthesis mechanisms of alkylpyrazines by microorganisms remain poorly understood. This study revealed the substrate, intermediates, and related enzymes for the synthesis of 2,5-dimethylpyrazine (2,5-DMP), which differ from the previous reports about the synthesis of 2,3,5,6-tetramethylpyrazine (TTMP). The synthesis mechanism described here can also explain the production of 2,3,5-trimethylpyrazine (TMP). The results provide insights into an alkylpyrazine's synthesis pathway involving l-threonine-3-dehydrogenase as the catalytic enzyme and l-threonine as the substrate.


Assuntos
Oxirredutases do Álcool/metabolismo , Bacillus subtilis/metabolismo , Pirazinas/metabolismo , Acetona/análogos & derivados , Acetilcoenzima A , Acetiltransferases/metabolismo , Oxirredutases do Álcool/biossíntese , Catálise , Aromatizantes , Glicina/metabolismo , Treonina/metabolismo
8.
J Exp Bot ; 70(19): 5217-5229, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31198943

RESUMO

In this study, we investigated the regulatory function of miR396 in the phase transition in Arabidopsis thaliana. Using AtMIR396a/b knockout mutants generated through clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-directed genome editing, we showed that miR396 negatively regulates the leaf size and vegetative phase transition, and the first leaf with abaxial trichomes appeared earlier in the mir396ab double mutant than in the wild type (WT) and was significantly delayed in miR396 overexpression lines. Moreover, mir396ab exhibited early flowering, whereas 35S:MIR396a/b and cib4-1 delayed flowering, and the flowering time was negatively correlated with FT gene expression. Furthermore, in arp6 and pie1 mutants, which are deficient in the ATP-dependent chromatin remodeling complex (SWR1-C), miR396 expression was significantly repressed. Compared with the WT, reduced H2A.Z deposit and stronger relative nucleosome occupancy in the promoter region of MIR396a was found in the arp6 mutant, indicating that SWR1-C contributes to the transcriptional activation of MIR396a via nucleosome dynamics. In addition, miR396 displayed specific spatio-temporal expression patterns in the leaf, which was altered in arp6 and pie1, and therefore affected the transcript levels of CIB4 and FT in these mutants. We propose that miR396 is not only a marker of cell differentiation, but also an age signal for leaf development and phase change. Meanwhile, SWR1-C-mediated epigenetic regulation contributes to the age-dependent enhancement of miR396 expression and differential miR396 accumulation among leaves.


Assuntos
Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , RNA de Plantas/metabolismo , Ativação Transcricional
9.
Appl Microbiol Biotechnol ; 103(11): 4511-4523, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30982107

RESUMO

XYR1 is the key transcription activator for cellulase gene expression in the model filamentous fungus Trichoderma reesei, which is widely applied in the industry due to its excellent capability of secreting a large quantity of cellulases. Despite the essential role of XYR1, the regulation of its expression in T. reesei cellulolytic response is poorly understood. In this study, we identified a transcription factor RXE1 exhibiting strong binding activity to the xyr1 promoter using yeast one-hybrid screen. RXE1 homologs exist in quite a few filamentous fungi but none of them have been assessed regarding their functional involvement in plant cell wall degradation. Knockdown of rxe1 in T. reesei using a copper-mediated RNAi system not only abrogated conidiation, but also remarkably compromised xyr1 and cellulase gene expression. The defective cellulase but not conidia production in the rxe1-knockdown strain was fully rescued by the constitutive expression of XYR1. Our study thus identified a novel transcriptional regulator controlling xyr1 and cellulase gene expression, which will contribute to elaborating the intricate network of cellulase gene regulation in T. reesei.


Assuntos
Celulase/biossíntese , Regulação Fúngica da Expressão Gênica , Genes Reguladores , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Celulase/genética , DNA Fúngico/metabolismo , Técnicas de Silenciamento de Genes , Testes Genéticos , Regiões Promotoras Genéticas , Ligação Proteica
10.
Am J Physiol Endocrinol Metab ; 314(5): E413-E417, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046281

RESUMO

PET radiopharmaceuticals can noninvasively measure free fatty acid (FFA) tissue uptake. Investigators often use PET scan-derived data to calculate FFA flux. We tested whether the [1-11C]palmitate PET measures of palmitate flux provide results equivalent to a continuous infusion of [U-13C]palmitate. Nine volunteers participated in study 1 to evaluate whether a rapidly (10-20 s) given bolus of [1-11C]palmitate affects calculated flux results. Thirty volunteers participated in study 2, which was identical to study 1 except that the [1-11C]palmitate bolus was given over 1 min. Volunteers in both studies also received a continuous intravenous infusion of [U-13C]palmitate. Plasma palmitate concentrations and enrichment were measured by liquid chromatography-mass spectrometry. The PET/CT images were analyzed on a workstation running PMOD. Palmitate flux was estimated using PET time-activity curve (TAC) data from regions of interest in the left ventricle (LV) and aorta both with and without hybrid TACs that employed the 11CO2-corrected data for the first 5 min and the 11CO2-corrected blood radioactivity for the remainder of the PET scan. Palmitate flux in study 1 measured with PET [1-11C]palmitate and [U-13C]palmitate were not correlated, and the PET [1-11C]palmitate flux was significantly less than the [U-13C]palmitate measured flux. In study 2, the palmitate flux using PET [1-11C]palmitate hybrid LV models provided closer mean estimates of [U-13C]palmitate measured flux. The best PET calculation approaches predicted 64% of the interindividual variance in [U-13C]palmitate measured flux. Palmitate kinetics measured using [1-11C]palmitate/PET do not provide the same palmitate kinetic results as the continuous infusion [U-13C]palmitate approach.


Assuntos
Isótopos de Carbono/química , Radioisótopos de Carbono/química , Ácidos Graxos não Esterificados/farmacocinética , Ácido Palmítico/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Adulto , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/química , Feminino , Voluntários Saudáveis , Humanos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Ácido Palmítico/química
11.
Am J Physiol Endocrinol Metab ; 315(2): E218-E228, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462565

RESUMO

PycnogenolR (PYC), a combination of active flavonoids derived from French maritime pine bark, is a natural antioxidant that has various pharmacological activities. Here, we investigated the beneficial effect of PYC on diet-induced hepatic steatosis. Apolipoprotein E (ApoE)-deficient male mice were administered PYC at oral doses of 30 or 100 mg·kg-1·day-1 for 2 wk in advance and were then fed a high-cholesterol and -fat diet (HCD) for 8 wk. Biochemical, immunohistochemical, and gene expression analyses were conducted to explore the effect of PYC on lipid metabolism in ApoE-deficient mice on a HCD. Short-term treatment with HCD in ApoE-deficient mice induced hepatic injuries, such as lipid metabolism disorder and hepatic histopathological changes. We found that PYC reduced body weight and the increase of serum lipids that had been caused by HCD. Supplementation of PYC significantly reduced lipid deposition in the liver, as shown by the lowered hepatic lipid content and histopathological lesions. We subsequently detected genes related to lipid metabolism and inflammatory cytokines. The study showed that PYC markedly suppressed the expression of genes related to hepatic lipogenesis, fatty acid uptake, and lipid storage while increasing the lipolytic gene, which thus reduced hepatic lipid content. Furthermore, PYC mainly reduced the expression of inflammatory cytokines and the infiltration of inflammatory cells, which were resistant to the development of hepatic steatosis. These results demonstrate that PYC protects against the occurrence and development of hepatic steatosis and may provide a new prophylactic approach for nonalcoholic fatty liver disease (NAFLD).


Assuntos
Antioxidantes/farmacologia , Dieta , Flavonoides/farmacologia , Camundongos Knockout para ApoE/fisiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Citocinas/biossíntese , Citocinas/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE/genética , Hepatopatia Gordurosa não Alcoólica/genética
12.
Mol Microbiol ; 105(1): 65-83, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28378498

RESUMO

Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei.


Assuntos
Celulase/genética , Trichoderma/genética , Sítios de Ligação/genética , Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Pegada de DNA/métodos , Proteínas Fúngicas/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Elementos Reguladores de Transcrição/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Trichoderma/metabolismo
13.
BMC Plant Biol ; 17(1): 150, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877679

RESUMO

BACKGROUND: Small RNA and degradome sequencing have identified a large number of miRNA-target pairs in plant seeds. However, detailed spatial and temporal studies of miRNA-mediated regulation, which can reflect links between seed development and germination are still lacking. RESULTS: In this study, we extended our investigation on miRNAs-involved gene regulation by a combined analysis of seed maturation and germination in barley. Through bioinformatics analysis of small RNA sequencing data, a total of 1324 known miRNA families and 448 novel miRNA candidates were identified. Of those, 16 known miRNAs with 40 target genes, and three novel miRNAs with four target genes were confirmed based on degradome sequencing data. Conserved miRNA families such as miR156, miR168, miR166, miR167, and miR894 were highly expressed in embryos of developing and germinating seeds. A barley-specific miRNA, miR5071, which was predicted to target an OsMLA10-like gene, accumulated at a high level, suggesting its involvement in defence response during these two developmental stages. Based on target prediction and Kyoto Encyclopedia of Genes and Genomes analysis of putative targets, nine highly expressed miRNAs were found to be related to phytohormone signalling and hormone cross-talk. Northern blot and qRT-PCR analysis showed that these miRNAs displayed differential expression patterns during seed development and germination, indicating their different roles in hormone signalling pathways. In addition, we showed that miR393 affected seed development through targeting two genes encoding the auxin receptors TIR1/AFBs in barley, as over-expression of miR393 led to an increased length-width ratio of seeds, whereas target mimic (MIM393)-mediated inhibition of its activity decreased the 1000-grain weight of seeds. Furthermore, the expression of auxin-responsive genes, abscisic acid- and gibberellic acid-related genes was altered in miR393 misexpression lines during germination and early seedling growth. CONCLUSIONS: Our work indicates that miRNA-target pairs participate in gene expression regulation and hormone interaction in barley embryo and provides evidence that miR393-mediated auxin response regulation affects grain development and influences gibberellic acid and abscisic acid homeostasis during germination.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , MicroRNAs/fisiologia , RNA de Plantas/fisiologia , Germinação/genética , Hordeum/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/fisiologia , Transdução de Sinais
14.
Appl Microbiol Biotechnol ; 101(5): 2067-2078, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27942754

RESUMO

Trichoderma reesei represents an important workhorse for industrial production of cellulases as well as other proteins. The molecular mechanism underlying the regulation of cellulase production as well as other physiological processes in T. reesei is still insufficiently understood. We constructed a P tcu1 -based promoter substitution cassette that allowed one-step replacement of the endogenous promoter for controlling the target gene expression with copper. We then showed that copper repression of the histone acetyltransferase gene gcn5 phenocopied the gcn5 deletion strain. Using the same strategy, we further characterized the function of another putative Spt-Ada-Gcn5 acetyltransferase (SAGA) complex subunit encoding gene, ada2, in T. reesei. Similar to the repression of gcn5, the addition of copper to the P tcu1 -ada2 strain not only drastically reduced the vegetative growth and conidiation in T. reesei but also severely compromised the induced cellulase gene expression. The developed strategy will thus be potentially useful to probe the biological function of the large fraction of T. reesei genes with unknown functions including those essential genes in the genome to expand its extraordinary biotechnological potential.


Assuntos
Celulase/genética , Cobre/metabolismo , Histona Acetiltransferases/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Trichoderma/genética , Celulase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/genética
15.
J Urol ; 195(6): 1903-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26694905

RESUMO

PURPOSE: Attenuated mycobacterium bacillus Calmette-Guérin is widely used as intravesical immunotherapy of nonmuscle invasive urothelial carcinoma. Currently there are limited data on the relationship between bacillus Calmette-Guérin dose intensity and tumor response. We evaluated the dose-response relationship of bacillus Calmette-Guérin to nonmuscle invasive bladder cancer in vitro using urothelial carcinoma cell lines and in vivo using an orthotopic mouse model. MATERIALS AND METHODS: Two human urothelial carcinoma cell lines were used to study the effect of bacillus Calmette-Guérin dose on the tumor cell response. Internalization, activation of signaling pathways, gene transactivation, cell viability, lactate dehydrogenase and HMGB1 release were study end points. An orthotopic tumor model was used to compare the effect of different doses on the antitumor efficacy of bacillus Calmette-Guérin. RESULTS: Bacillus Calmette-Guérin internalization by urothelial carcinoma cells increased as a function of time and dose with a plateau at higher doses and/or long exposure times. Intracellular signaling demonstrated a similar direct, dose dependent increase. Cytokine expression by urothelial carcinoma cells as a function of dose was variable. Some genes increased progressively but others showed a decrease at the highest dose. While nonviable cell number increased in proportion to dose, the number of cells undergoing necrotic cell death decreased at higher doses. A higher dose of bacillus Calmette-Guérin (1:200) showed a better antitumor effect than a standard dose (1:50) (p <0.01). CONCLUSIONS: Bacillus Calmette-Guérin dose has a direct impact on urothelial carcinoma cell biology. Increased dose intensity, particularly in nonresponders, may represent a strategy to increase bacillus Calmette-Guérin treatment efficacy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacina BCG/administração & dosagem , Carcinoma de Células de Transição/terapia , Neoplasias da Bexiga Urinária/terapia , Adjuvantes Imunológicos/uso terapêutico , Administração Intravesical , Animais , Vacina BCG/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta Imunológica , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
16.
J Biol Chem ; 288(46): 32861-72, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085297

RESUMO

Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the Δstp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement.


Assuntos
Celobiose/metabolismo , Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Trichoderma/metabolismo , Celobiose/genética , Celulase/genética , Proteínas Fúngicas/genética , Deleção de Genes , Genoma Fúngico/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trichoderma/genética
17.
J Urol ; 191(3): 823-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24035882

RESUMO

PURPOSE: The attenuated mycobacterium bacillus Calmette-Guérin is widely used as intravesical immunotherapy for nonmuscle invasive urothelial carcinoma. Previous studies demonstrated that in the laboratory and clinical settings bacillus Calmette-Guérin viability is a variable that correlates with antitumor efficacy. We evaluated how loss of viability impacted a number of molecular and phenotypic intermediate end points that characterize and/or contribute to the direct effect of bacillus Calmette-Guérin on urothelial carcinoma cells. MATERIALS AND METHODS: We studied the effect of loss of bacillus Calmette-Guérin viability on the tumor cell response to the treatment in 2 human urothelial carcinoma cell lines. The cellular response to bacillus Calmette-Guérin rendered nonviable by heat killing was compared to the response to viable bacillus. Response end points included the induction of oxidative stress, activation of intracellular signaling pathways, gene transactivation and phenotypic changes. RESULTS: Loss of viability resulted in a quantitative decrease in the tumor cell response relative to that of viable bacillus Calmette-Guérin for all measured end points. The decrease in response varied by cell line, ranging from 15% to 100% of the response to viable bacillus. While responses were quantitatively different, nonviable bacillus continued to induce responses that were qualitatively similar to those of bacillus Calmette-Guérin relative to that in untreated controls. CONCLUSIONS: Bacillus Calmette-Guérin viability is an important variable influencing the direct tumor cell response to the treatment. Although the magnitude of its effects are attenuated, heat killed bacillus Calmette-Guérin remains active for the induction of bacillus Calmette-Guérin responsive biological end points.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacina BCG/farmacologia , Carcinoma de Células de Transição/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Estresse Oxidativo , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Neoplasias da Bexiga Urinária/genética
18.
J Urol ; 192(4): 1238-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24928267

RESUMO

PURPOSE: Exposure of urothelial carcinoma cells to bacillus Calmette-Guérin affects cellular redox status and tumor cell biology but the mechanism(s) remain unclear. We examined free radical production by bacillus Calmette-Guérin in tumor cells in response to the bacillus using global profiling of reactive oxygen species/reactive nitrogen species. The relationship between free radical generation and downstream cellular events was evaluated. MATERIALS AND METHODS: Using fluorescent probes we performed global profiling of reactive oxygen species/reactive nitrogen species in heat killed and viable bacillus Calmette-Guérin, and in the 253J and T24 urothelial carcinoma cell lines after exposure to the bacillus. Inhibition of bacillus Calmette-Guérin internalization and H2O2 pharmacological scavenging were studied for their effect on cellular reactive oxygen species/reactive nitrogen species generation and various physiological end points. RESULTS: Viable bacillus Calmette-Guérin produced H2O2 and O2(-) but nitric oxide was not generated. Loss of viability decreased H2O2 production by 50% compared to viable bacillus. Bacillus Calmette-Guérin internalization was necessary for the bacillus to induce reactive oxygen species/reactive nitrogen species generation in urothelial carcinoma cells. Pharmacological H2O2 scavenging reversed reactive oxygen species/reactive nitrogen species mediated signaling in urothelial carcinoma cells. Bacillus Calmette-Guérin dependent alterations in tumor biology, including intracellular signaling, gene expression and cytotoxicity, depended on free radical generation. CONCLUSIONS: This study demonstrates the importance of free radical generation by bacillus Calmette-Guérin and intracellular generation of cellular oxidative stress on the urothelial carcinoma cell response to the bacillus. Manipulating the cellular oxidative stress induced by bacillus Calmette-Guérin represents a potential target to increase the efficacy of the bacillus.


Assuntos
Vacina BCG/farmacologia , Carcinoma de Células de Transição/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Adjuvantes Imunológicos/farmacologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
19.
Hypertens Res ; 47(6): 1719-1727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565699

RESUMO

Recent studies have explored the association between primary aldosteronism and cardiovascular disease incidence. The association between specific primary aldosteronism treatments and differential improvement in cardiovascular event rates is yet to be established. This study was designed to compare the relative effects of spironolactone therapy and surgical intervention on cardiovascular outcomes among primary aldosteronism patients. This retrospective observational study included 853 primary aldosteronism patients from the First Affiliated Hospital of China Medical University between 2014 and 2022. Patients who had completed abdominal computed tomography (CT) examinations with similar metabolic characteristics and 6-month follow-up analyses were included in this study. These patients were separated into a surgical treatment group (n = 33) and a spironolactone treatment group (n = 51). Demographic data, biochemical analysis results, liver/spleen (L/S) X-ray attenuation ratio, hospitalization frequency, and cardiovascular events were compared between the two groups. The spironolactone group demonstrated significantly improved metabolic characteristics compared to the surgical group, shown by lower BMI, blood pressure, total cholesterol (TC), insulin resistance index (IRI), and reduced non-alcoholic fatty liver disease prevalence. Metabolic parameters did not differ significantly within the surgical treatment group when comparing pre- and postoperative values. The incidence of cardiovascular events was lower in the spironolactone group compared to the surgery group (23/33 vs. 20/51, P < 0.001) despite higher hospitalization rates(37/31 vs. 61/53, P < 0.001). In patients with primary aldosteronism, spironolactone treatment is more effective than surgical intervention in remediating abnormal lipid and glucose metabolism while improving cardiovascular outcomes. Chinese clinical trial registry registration number: ChiCTR2300074574.


Assuntos
Doenças Cardiovasculares , Hiperaldosteronismo , Espironolactona , Humanos , Hiperaldosteronismo/complicações , Hiperaldosteronismo/tratamento farmacológico , Hiperaldosteronismo/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Doenças Cardiovasculares/etiologia , Espironolactona/uso terapêutico , Glicolipídeos/metabolismo , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Resultado do Tratamento , Adrenalectomia , China/epidemiologia
20.
Clin Nutr ; 43(8): 1769-1780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936303

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS: A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS: ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS: The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER: ChiCTR2300076741; https://www.chictr.org.cn/.


Assuntos
Catequina , Dipeptidil Peptidase 4 , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Catequina/análogos & derivados , Catequina/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Masculino , Humanos , Camundongos , Dipeptidil Peptidase 4/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Pessoa de Meia-Idade , Feminino , Modelos Animais de Doenças , Adulto , Células Hep G2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA