RESUMO
BACKGROUND: Unbiased analysis of the impact of adaptive radiotherapy (ART) is necessary to evaluate dosimetric benefit and optimize clinics' workflows. The aim of the study was to assess the need for adaptive radiotherapy (ART) in head and neck (H&N) cancer patients using an automatic planning tool in a retrospective planning study. MATERIALS AND METHODS: Thirty H&N patients treated with adaptive radiotherapy were analysed. Patients had a CT scan for treatment planning and a verification CT during treatment according to the clinic's protocol. Considering these images, three plans were retrospectively generated using the iCycle tool to simulate the scenarios with and without adaptation: 1) the optimized plan based on the planning CT; 2) the optimized plan based on the verification CT (ART-plan); 3) the plan obtained by considering treatment plan 1 re-calculated in the verification CT (non-ART plan). The dosimetric endpoints for both target volumes and OAR were compared between scenarios 2 and 3 and the SPIDERplan used to evaluate plan quality. RESULTS: The most significant impact of ART was found for the PTVs, which demonstrated decreased D98% in the non-ART plan. A general increase in the dose was observed for the OAR but only the spinal cord showed a statistical significance. The SPIDERplan analysis indicated an overall loss of plan quality in the absence of ART. CONCLUSION: These results confirm the advantages of ART in H&N patients, especially for the coverage of target volumes. The usage of an automatic planning tool reduces planner-induced bias in the results, guaranteeing that the observed changes derive from the application of ART.
RESUMO
PURPOSE: Multiple metrics are proposed to characterize and compare the complexity of helical tomotherapy (HT) plans created for different treatment sites. METHODS: A cohort composed of 208 HT plans from head and neck (105), prostate (51) and brain (52) tumor sites was considered. For each plan, 14 complexity metrics were calculated. Those metrics evaluate the percentage of leaves with small opening times or approaching the projection duration, the percentage of closed leaves, the amount of tongue-and-groove effect, and the overall modulation of the planned sinogram. To enable data visualization, an approach based on principal component analysis was followed to reduce the dataset dimensionality. This allowed the calculation of a global plan complexity score. The correlation between plan complexity and pretreatment verification results using the Spearman's rank correlation coefficients was investigated. RESULTS: According to the global score, the most complex plans were the head and neck tumor cases, followed by the prostate and brain lesions irradiated with stereotactic technique. For almost all individual metrics, head and neck plans confirmed to be the plans with the highest complexity. Nevertheless, prostate cases had the highest percentage of leaves with an opening time approaching the projection duration, whereas the stereotactic brain plans had the highest percentage of closed leaves per projection. Significant correlations between some of the metrics and the pretreatment verification results were identified for the stereotactic brain group. CONCLUSIONS: The proposed metrics and the global score demonstrated to be useful to characterize and quantify the complexity of HT plans of different treatment sites. The reported differences inter- and intra-group may be valuable to guide the planning process aiming at reducing uncertainties and harmonize planning strategies.
Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Cabeça , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Pescoço , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por ComputadorRESUMO
This study aims to report the relevant issues concerning small fields in the commissioning of a TrueBeam STx for photon energies of 6MV, 10MV, 6FFF, and 10FFF. Percent depth doses, profiles, and field output factors were measured according to the beam model configuration of the treatment planning system. Multiple detectors were used based on the IAEA TRS-483 protocol as well as EBT3 radiochromic film. Analytical Anisotropic and Acuros XB algorithms, were configured and validated through basic dosimetry comparisons and end-to-end clinical tests.
Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Algoritmos , Fótons/uso terapêutico , CarmustinaRESUMO
PURPOSE: To provide a practical protocol for absolute dose verification of stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) treatment plans, based on our clinical experience. It aims to be a concise summary of the main aspects to be considered when establishing an accurate film dosimetry system. METHODS: Procedures for film calibration and conversion to dose are described for a dosimetry system composed of Gafchromic™ EBT-XD films and a flatbed document scanner. Factors that affect the film-scanner response are also reviewed and accounted for. The accuracy of the proposed methodology was assessed by taking a set of strips irradiated to known doses and its applicability is illustrated for ten SBRT/SRS treatment plans. The film response was converted to dose using red and triple channel dosimetry. The agreement between the planned and measured dose distributions was evaluated using global gamma analysis with criteria of 3%/2mm 10% threshold (TH), 2%/2mm 10% TH, and 2%/2mm 20% TH. RESULTS: The differences between the expected and determined doses from the strips analysis were 0.9 ± 0.6% for the red channel and 1.1 ± 0.7% for the triple channel method. Regarding the SBRT/SRS plans verification, the mean gamma passing rates were 99.5 ± 1.0% vs 99.6 ± 1.0% (3%/2mm 10% TH), 96.9 ± 3.5% vs 99.1 ± 1.3% (2%/2mm 10% TH) and 98.4 ± 1.8% vs 98.8 ± 1.5% (2%/2mm 20% TH) for red and triple channel dosimetry, respectively. CONCLUSIONS: The proposed protocol allows for accurate absolute dose verification of SBRT/SRS treatment plans, applying both single and triple channel methods. It may work as a guide for users that intend to implement a film dosimetry system.
Assuntos
Radiocirurgia , Calibragem , Dosimetria Fotográfica , RadiometriaRESUMO
PURPOSE: To apply the recent code of practice from the IAEA/AAPM, TRS 483, to helical tomotherapy (HT) for reference and relative dosimetry obtaining correction factors for the Exradin A1SL ionization chamber. METHODS: The beam quality correction factor for the A1SL chamber was obtained through three different approaches following TRS 483 concepts and compared with published values. The determination of the reference absolute dose for the machine-specific reference (msr) field was complemented with relative dosimetry through the determination of output factors of small fields using different detectors. The response of A1SL was compared with correction-free film results and corrected output factors of other detectors. RESULTS: A weighted mean beam quality correction factor of 0.9945± 0.0073 was obtained for the A1SL chamber which is in agreement with values reported in the literature. Output factors obtained with different detectors were in agreement, given the uncertainty level. Considering the film output factors as free of corrections, the average value for A1SL output factors corrections was 1.000 ± 0.007. CONCLUSIONS: The beam quality correction factors for the A1SL chamber obtained through the three different pathways recommended by TRS 483 agreed with each other and also with published values. The measurements from the A1SL chamber normalized to the msr field in HT can be taken as output factors for small clinical field sizes without further corrections.
Assuntos
Radiometria/normas , Radioterapia Assistida por Computador , Padrões de ReferênciaRESUMO
PURPOSE: To quantify the radiobiological advantages obtained by an Improved Forward Planning technique (IFP) and two IMRT techniques using different fractionation schemes for the irradiation of head and neck tumours. The conventional radiation therapy technique (CONVT) was used here as a benchmark. METHODS: Seven patients with head and neck tumours were selected for this retrospective planning study. The PTV1 included the primary tumour, PTV2 the high risk lymph nodes and PTV3 the low risk lymph nodes. Except for the conventional technique where a maximum dose of 64.8 Gy was prescribed to the PTV1, 70.2 Gy, 59.4 Gy and 50.4 Gy were prescribed respectively to PTV1, PTV2 and PTV3. Except for IMRT2, all techniques were delivered by three sequential phases. The IFP technique used five to seven directions with a total of 15 to 21 beams. The IMRT techniques used five to nine directions and around 80 segments. The first, IMRT1, was prescribed with the conventional fractionation scheme of 1.8 Gy per fraction delivered in 39 fractions by three treatment phases. The second, IMRT2, simultaneously irradiated the PTV2 and PTV3 with 59.4 Gy and 50.4 Gy in 28 fractions, respectively, while the PTV1 was boosted with six subsequent fractions of 1.8 Gy. Tissue response was calculated using the relative seriality model and the Poisson Linear-Quadratic-Time model to simulate repopulation in the primary tumour. RESULTS: The average probability of total tumour control increased from 38% with CONVT to 80% with IFP, to 85% with IMRT1 and 89% with IMRT2. The shorter treatment time and larger dose per fraction obtained with IMRT2 resulted in an 11% increase in the probability of control in the PTV1 with respect to IFP and 7% relatively to IMRT1 (p < 0.05). The average probability of total patient complications was reduced from 80% with CONVT to 61% with IFP and 31% with IMRT. The corresponding probability of complications in the ipsilateral parotid was 63%, 42% and 20%; in the contralateral parotid it was 50%, 20% and 9%; in the oral cavity it was 2%, 15% and 4% and in the mandible it was 1%, 5% and 3%, respectively. CONCLUSIONS: A significant improvement in treatment outcome was obtained with IMRT compared to conventional radiation therapy. The practical and biological advantages of IMRT2, employing a shorter treatment time, may outweigh the small differences obtained in the organs at risk between the two IMRT techniques. This technique is therefore presently being used in the clinic for selected patients with head and neck tumours. A significant improvement in the quality of the dose distribution was obtained with IFP compared to CONVT. Thus, this beam arrangement is used in the clinical routine as an alternative to IMRT.