RESUMO
SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.
Assuntos
Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Meios de Contraste/química , Cirrose Hepática/patologia , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Nanopartículas Magnéticas de Óxido de Ferro , Colágeno/análiseRESUMO
ABSTRACT: Neuroendocrine neoplasms are a heterogeneous group of gastrointestinal and lung tumors. Their diverse clinical manifestations, variable locations, and heterogeneity present notable diagnostic challenges. This article delves into the imaging modalities vital for their detection and characterization. Computed tomography is essential for initial assessment and staging. At the same time, magnetic resonance imaging (MRI) is particularly adept for liver, pancreatic, osseous, and rectal imaging, offering superior soft tissue contrast. The article also highlights the limitations of these imaging techniques, such as MRI's inability to effectively evaluate the cortical bone and the questioned cost-effectiveness of computed tomography and MRI for detecting specific gastric lesions. By emphasizing the strengths and weaknesses of these imaging techniques, the review offers insights into optimizing their utilization for improved diagnosis, staging, and therapeutic management of neuroendocrine neoplasms.
Assuntos
Imageamento por Ressonância Magnética , Tumores Neuroendócrinos , Tomografia Computadorizada por Raios X , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodosRESUMO
BACKGROUND: In most CKDs, lysyl oxidase oxidation of collagen forms allysine side chains, which then form stable crosslinks. We hypothesized that MRI with the allysine-targeted probe Gd-oxyamine (OA) could be used to measure this process and noninvasively detect renal fibrosis. METHODS: Two mouse models were used: hereditary nephritis in Col4a3-deficient mice (Alport model) and a glomerulonephritis model, nephrotoxic nephritis (NTN). MRI measured the difference in kidney relaxation rate, ΔR1, after intravenous Gd-OA administration. Renal tissue was collected for biochemical and histological analysis. RESULTS: ΔR1 was increased in the renal cortex of NTN mice and in both the cortex and the medulla of Alport mice. Ex vivo tissue analyses showed increased collagen and Gd-OA levels in fibrotic renal tissues and a high correlation between tissue collagen and ΔR1. CONCLUSIONS: Magnetic resonance imaging using Gd-OA is potentially a valuable tool for detecting and staging renal fibrogenesis.
Assuntos
Rim , Nefrite Hereditária , Camundongos , Animais , Rim/diagnóstico por imagem , Rim/patologia , Nefrite Hereditária/patologia , Fibrose , Imageamento por Ressonância Magnética/métodos , Modelos Animais de DoençasRESUMO
During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.
Assuntos
Ácido 2-Aminoadípico , Aldeídos , Camundongos , Animais , Ácido 2-Aminoadípico/química , Imageamento por Ressonância Magnética , PulmãoRESUMO
OBJECTIVE: To compare positron emission tomography (PET)/magnetic resonance imaging (MRI) to the standard of care imaging (SCI) for the diagnosis of peritoneal carcinomatosis (PC) in primary abdominopelvic malignancies. SUMMARY BACKGROUND DATA: Identifying PC impacts prognosis and management of multiple cancer types. METHODS: Adult subjects were prospectively and consecutively enrolled from April 2019 to January 2021. Inclusion criteria were: 1) acquisition of whole-body contrast-enhanced (CE) 18F-fluorodeoxyglucose PET/MRI, 2) pathologically confirmed primary abdominopelvic malignancies. Exclusion criteria were: 1) greater than 4 weeks interval between SCI and PET/MRI, 2) unavailable follow-up. SCI consisted of whole-body CE PET/computed tomography (CT) with diagnostic quality CT, and/or CE-CT of the abdomen and pelvis, and/or CE-MRI of the abdomen±pelvis. If available, pathology or surgical findings served as the reference standard, otherwise, imaging followup was used. When SCI and PET/MRI results disagreed, medical records were checked for management changes. Follow-up data were collected until August 2021. RESULTS: One hundred sixty-four subjects were included, 85 (52%) were female, and the median age was 60 years (interquartile range 50-69). At a subject level, PET/MRI had higher sensitivity (0.97, 95% CI 0.86-1.00) than SCI (0.54, 95% CI 0.37-0.71), P < 0.001, without a difference in specificity, of 0.95 (95% CI 0.90-0.98) for PET/MRI and 0.98 (95% CI 0.93-1.00) for SCI, P » 0.250. PET/MRI and SCI results disagreed in 19 cases. In 5/19 (26%) of the discordant cases, PET/MRI findings consistent with PC missed on SCI led to management changes. CONCLUSION: PET/MRI improves detection of PC compared with SCI which frequently changes management.
Assuntos
Neoplasias Peritoneais , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Neoplasias Peritoneais/diagnóstico por imagem , Padrão de Cuidado , Fluordesoxiglucose F18 , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodosRESUMO
Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.
Assuntos
Meios de Contraste , Compostos Organometálicos , Ratos , Humanos , Animais , Gadolínio/farmacocinética , Distribuição Tecidual , Estudos Prospectivos , Encéfalo , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodosRESUMO
BACKGROUND AND PURPOSE: High-risk atherosclerosis is an underlying cause of cardiovascular events, yet identifying the specific patient population at immediate risk is still challenging. Here, we used a rabbit model of atherosclerotic plaque rupture and human carotid endarterectomy specimens to describe the potential of molecular fibrin imaging as a tool to identify thrombotic plaques. METHODS: Atherosclerotic plaques in rabbits were induced using a high-cholesterol diet and aortic balloon injury (N=13). Pharmacological triggering was used in a group of rabbits (n=9) to induce plaque disruption. Animals were grouped into thrombotic and nonthrombotic plaque groups based on gross pathology (gold standard). All animals were injected with a novel fibrin-specific probe 68Ga-CM246 followed by positron emission tomography (PET)/magnetic resonance imaging 90 minutes later. 68Ga-CM246 was quantified on the PET images using tissue-to-background (back muscle) ratios and standardized uptake value. RESULTS: Both tissue-to-background (back muscle) ratios and standardized uptake value were significantly higher in the thrombotic versus nonthrombotic group (P<0.05). Ex vivo PET and autoradiography of the abdominal aorta correlated positively with in vivo PET measurements. Plaque disruption identified by 68Ga-CM246 PET agreed with gross pathology assessment (85%). In ex vivo surgical specimens obtained from patients undergoing elective carotid endarterectomy (N=12), 68Ga-CM246 showed significantly higher binding to carotid plaques compared to a D-cysteine nonbinding control probe. CONCLUSIONS: We demonstrated that molecular fibrin PET imaging using 68Ga-CM246 could be a useful tool to diagnose experimental and clinical atherothrombosis. Based on our initial results using human carotid plaque specimens, in vivo molecular imaging studies are warranted to test 68Ga-CM246 PET as a tool to stratify risk in atherosclerotic patients.
Assuntos
Fibrina , Trombose Intracraniana/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Aorta Abdominal/diagnóstico por imagem , Músculos do Dorso/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Feminino , Radioisótopos de Gálio , Humanos , Processamento de Imagem Assistida por Computador , Trombose Intracraniana/etiologia , Imageamento por Ressonância Magnética , Masculino , Placa Aterosclerótica/complicações , CoelhosRESUMO
Liver fibrogenesis is accompanied by upregulation of lysyl oxidase enzymes, which catalyze oxidation of lysine ε-amino groups on the extracellular matrix proteins to form the aldehyde containing amino acid allysine (LysAld). Here, we describe the design and synthesis of novel manganese-based MRI probes with high signal amplification for imaging liver fibrogenesis. Rational design of a series of stable hydrazine-equipped manganese MRI probes gives Mn-2CHyd with the highest affinity and turn-on relaxivity (4-fold) upon reaction with LysAld. A dynamic PET-MRI study using [52Mn]Mn-2CHyd showed low liver uptake of the probe in healthy mice. The ability of the probe to detect liver fibrogenesis was then demonstrated in vivo in CCl4-injured mice. This study enables further development and application of manganese-based hydrazine-equipped probes for imaging liver fibrogenesis.
Assuntos
Meios de Contraste , Manganês , Animais , Meios de Contraste/química , Hidrazinas , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Manganês/química , CamundongosRESUMO
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFß activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFß regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFß-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFß treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFß stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFß and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Assuntos
Aldeídos/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Aldeídos/química , Animais , Animais Recém-Nascidos , Embrião de Mamíferos/patologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Sondas Moleculares/metabolismo , Células NIH 3T3 , Proteína-Lisina 6-Oxidase/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Transdução de Sinais , Proteínas Smad/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismoRESUMO
BACKGROUND: Fibrin deposition is a fundamental pathophysiological event in the inflammatory component of various CNS disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Beyond its traditional role in coagulation, fibrin elicits immunoinflammatory changes with oxidative stress response and activation of CNS-resident/peripheral immune cells contributing to CNS injury. PURPOSE: To investigate if CNS fibrin deposition can be determined using molecular MRI, and to assess its capacity as a non-invasive imaging biomarker that corresponds to inflammatory response and barrier impairment. MATERIALS AND METHODS: Specificity and efficacy of a peptide-conjugated Gd-based molecular MRI probe (EP2104-R) to visualise and quantify CNS fibrin deposition were evaluated. Probe efficacy to specifically target CNS fibrin deposition in murine adoptive-transfer experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for MS (n = 12), was assessed. Findings were validated using immunohistochemistry and laser ablation inductively coupled plasma mass spectrometry. Deposition of fibrin in neuroinflammatory conditions was investigated and its diagnostic capacity for disease staging and monitoring as well as quantification of immunoinflammatory response was determined. Results were compared using t-tests (two groups) or one-way ANOVA with multiple comparisons test. Linear regression was used to model the relationship between variables. RESULTS: For the first time (to our knowledge), CNS fibrin deposition was visualised and quantified in vivo using molecular imaging. Signal enhancement was apparent in EAE lesions even 12-h after administration of EP2104-R due to targeted binding (M ± SD, 1.07 ± 0.10 (baseline) vs. 0.73 ± 0.09 (EP2104-R), p = .008), which could be inhibited with an MRI-silent analogue (M ± SD, 0.60 ± 0.14 (EP2104-R) vs. 0.96 ± 0.13 (EP2104-La), p = .006). CNS fibrin deposition corresponded to immunoinflammatory activity (R2 = 0.85, p < .001) and disability (R2 = 0.81, p < .001) in a model for MS, which suggests a clinical role for staging and monitoring. Additionally, EP2104-R showed substantially higher SNR (M ± SD, 6.6 ± 1 (EP2104-R) vs. 2.7 ± 0.4 (gadobutrol), p = .004) than clinically used contrast media, which increases sensitivity for lesion detection. CONCLUSIONS: Molecular imaging of CNS fibrin deposition provides an imaging biomarker for inflammatory CNS pathology, which corresponds to pathophysiological ECM remodelling and disease activity, and yields high signal-to-noise ratio, which can improve diagnostic neuroimaging across several neurological diseases with variable degrees of barrier impairment.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Meios de Contraste , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/patologia , Fibrina , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologiaRESUMO
We present a quantitative analysis of the thermodynamic stabilities of Mn(II) complexes, defined by the equilibrium constants (logâ¯KMnL values) and the values of pMn obtained as -log[Mn]free for total metal and ligand concentrations of 1 and 10 µM, respectively. We used structural descriptors to analyze the contributions to complex stability of different structural motifs in a quantitative way. The experimental log KMnL and pMn values can be predicted to a good accuracy by adding the contributions of the different motifs present in the ligand structure. This allowed for the identification of features that provide larger contributions to complex stability, which will be very helpful for the design of efficient chelators for Mn(II) complexation. This issue is particularly important to develop Mn(II) complexes for medical applications, for instance, as magnetic resonance imaging (MRI) contrast agents. The analysis performed here also indicates that coordination number eight is more common for Mn(II) than is generally assumed, with the highest logâ¯KMnL values generally observed for hepta- and octadentate ligands. The X-ray crystal structure of [Mn2(DOTA)(H2O)2], in which eight-coordinate [Mn(DOTA)]2- units are bridged by six-coordinate exocyclic Mn(II) ions, is also reported.
Assuntos
Complexos de Coordenação , Manganês , Meios de Contraste/química , Complexos de Coordenação/química , Ligantes , Imageamento por Ressonância Magnética , Manganês/química , TermodinâmicaRESUMO
Rationale: Early, accurate diagnosis of interstitial lung disease (ILD) informs prognosis and therapy, especially in idiopathic pulmonary fibrosis (IPF). Current diagnostic methods are imperfect. High-resolution computed tomography has limited resolution, and surgical lung biopsy (SLB) carries risks of morbidity and mortality. Endobronchial optical coherence tomography (EB-OCT) is a low-risk, bronchoscope-compatible modality that images large lung volumes in vivo with microscopic resolution, including subpleural lung, and has the potential to improve the diagnostic accuracy of bronchoscopy for ILD diagnosis. Objectives: We performed a prospective diagnostic accuracy study of EB-OCT in patients with ILD with a low-confidence diagnosis undergoing SLB. The primary endpoints were EB-OCT sensitivity/specificity for diagnosis of the histopathologic pattern of usual interstitial pneumonia (UIP) and clinical IPF. The secondary endpoint was agreement between EB-OCT and SLB for diagnosis of the ILD fibrosis pattern. Methods: EB-OCT was performed immediately before SLB. The resulting EB-OCT images and histopathology were interpreted by blinded, independent pathologists. Clinical diagnosis was obtained from the treating pulmonologists after SLB, blinded to EB-OCT. Measurements and Main Results: We enrolled 31 patients, and 4 were excluded because of inconclusive histopathology or lack of EB-OCT data. Twenty-seven patients were included in the analysis (16 men, average age: 65.0 yr): 12 were diagnosed with UIP and 15 with non-UIP ILD. Average FVC and DlCO were 75.3% (SD, 18.5) and 53.5% (SD, 16.4), respectively. Sensitivity and specificity of EB-OCT was 100% (95% confidence interval, 75.8-100.0%) and 100% (79.6-100%), respectively, for both histopathologic UIP and clinical diagnosis of IPF. There was high agreement between EB-OCT and histopathology for diagnosis of ILD fibrosis pattern (weighted κ: 0.87 [0.72-1.0]). Conclusions: EB-OCT is a safe, accurate method for microscopic ILD diagnosis, as a complement to high-resolution computed tomography and an alternative to SLB.
Assuntos
Broncoscopia/métodos , Broncoscopia/normas , Confiabilidade dos Dados , Fibrose Pulmonar Idiopática/diagnóstico , Tomografia de Coerência Óptica/métodos , Tomografia de Coerência Óptica/normas , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Fe3+ complexes in aqueous solution can exist as discrete mononuclear species or multinuclear magnetically coupled species. Stimuli-driven change to Fe3+ speciation represents a powerful mechanistic basis for magnetic resonance sensor technology, but ligand design strategies to exert precision control of aqueous Fe3+ magnetostructural properties are entirely underexplored. In pursuit of this objective, we rationally designed a ligand to strongly favor a dinuclear µ-oxo-bridged and antiferromagnetically coupled complex, but which undergoes carboxylesterase mediated transformation to a mononuclear high-spin Fe3+ chelate resulting in substantial T1 -relaxivity increase. The data communicated demonstrate proof of concept for a novel and effective strategy to exert biochemical control over aqueous Fe3+ magnetic, structural, and relaxometric properties.
Assuntos
Carboxilesterase/metabolismo , Compostos Férricos/metabolismo , Compostos Férricos/química , Estrutura MolecularRESUMO
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Abdome/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Sistema Nervoso Central/diagnóstico por imagem , Quelantes/química , Gadolínio/química , Humanos , MagnetismoRESUMO
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Assuntos
Hepatopatias/diagnóstico , Fígado , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Doença Crônica , Gastroenterologia/métodos , Gastroenterologia/tendências , Humanos , Fígado/diagnóstico por imagem , Fígado/patologiaRESUMO
Background Liver biopsy is the reference standard to diagnose nonalcoholic steatohepatitis (NASH) but is invasive with potential complications. Purpose To evaluate molecular MRI with type 1 collagen-specific probe EP-3533 and allysine-targeted fibrogenesis probe Gd-Hyd, MR elastography, and native T1 to characterize fibrosis and to assess treatment response in a rat model of NASH. Materials and Methods MRI was performed prospectively (June-November 2018) in six groups of male Wistar rats (a) age- and (b) weight-matched animals received standard chow (n = 12 per group); (c) received choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) for 6 weeks or (d) 9 weeks (n = 8 per group); (e) were fed 6 weeks of CDAHFD and switched to standard chow for 3 weeks (n = 12); (f) were fed CDAHFD for 9 weeks with daily treatment of elafibranor beginning at week 6 (n = 14). Differences in imaging measurements and tissue analyses among groups were tested with one-way analysis of variance. The ability of each imaging measurement to stage fibrosis was quantified by using area under the receiver operating characteristic curve (AUC) with quantitative digital pathology (collagen proportionate area [CPA]) as reference standard. Optimal cutoff values for distinguishing advanced fibrosis were used to assess treatment response. Results AUC for distinguishing fibrotic (CPA >4.8%) from nonfibrotic (CPA ≤4.8%) livers was 0.95 (95% confidence interval [CI]: 0.91, 1.00) for EP-3533, followed by native T1, Gd-Hyd, and MR elastography with AUCs of 0.90 (95% CI: 0.83, 0.98), 0.84 (95% CI: 0.74, 0.95), and 0.65 (95% CI: 0.51, 0.79), respectively. AUCs for discriminating advanced fibrosis (CPA >10.3%) were 0.86 (95% CI: 0.76, 0.97), 0.96 (95% CI: 0.90, 1.01), 0.84 (95% CI: 0.70, 0.98), and 0.74 (95% CI: 0.63, 0.86) for EP-3533, Gd-Hyd, MR elastography, and native T1, respectively. Gd-Hyd MRI had the highest accuracy (24 of 26, 92%; 95% CI: 75%, 99%) in identifying responders and nonresponders in the treated groups compared with MR elastography (23 of 26, 88%; 95% CI: 70%, 98%), EP-3533 (20 of 26, 77%; 95% CI: 56%, 91%), and native T1 (14 of 26, 54%; 95% CI: 33%, 73%). Conclusion Collagen-targeted molecular MRI most accurately detected early onset of fibrosis, whereas the fibrogenesis probe Gd-Hyd proved most accurate for detecting treatment response. © RSNA, 2020 Online supplemental material is available for this article.
Assuntos
Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/terapia , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Chalconas/uso terapêutico , Dieta/métodos , Modelos Animais de Doenças , Fígado/diagnóstico por imagem , Cirrose Hepática/etiologia , Masculino , Hepatopatia Gordurosa não Alcoólica/complicações , Propionatos/uso terapêutico , Estudos Prospectivos , Ratos , Ratos WistarRESUMO
Farnesoid X receptor (FXR) is a nuclear receptor that has emerged as a key regulator in the maintenance of hepatic steatosis, inflammation, and fibrosis. However, the role of FXR in renal fibrosis remains to be established. Here, we investigate the effects of the FXR agonist EDP-305 in a mouse model of tubulointerstitial fibrosis via unilateral ureteral obstruction (UUO). Male C57Bl/6 mice received a UUO on their left kidney. On postoperative d 4, mice received daily treatment by oral gavage with either vehicle control (0.5% methylcellulose) or 10 or 30 mg/kg EDP-305. All animals were euthanized on postoperative d 12. EDP-305 dose-dependently decreased macrophage infiltration as measured by the F4/80 staining area and proinflammatory cytokine gene expression. EDP-305 also dose-dependently reduced interstitial fibrosis as assessed by morphometric quantification of the collagen proportional area and kidney hydroxyproline levels. Finally, yes-associated protein (YAP) activation, a major driver of fibrosis, increased after UUO injury and was diminished by EDP-305 treatment. Consistently, EDP-305 decreased TGF-ß1-induced YAP nuclear localization in human kidney 2 cells by increasing inhibitory YAP phosphorylation. YAP inhibition may be a novel antifibrotic mechanism of FXR agonism, and EDP-305 could be used to treat renal fibrosis.-Li, S., Ghoshal, S., Sojoodi, M., Arora, G., Masia, R., Erstad, D. J., Ferriera, D. S., Li, Y., Wang, G., Lanuti, M., Caravan, P., Or, Y. S., Jiang, L.-J., Tanabe, K. K., Fuchs, B. C. The farnesoid X receptor agonist EDP-305 reduces interstitial renal fibrosis in a mouse model of unilateral ureteral obstruction.
Assuntos
Fibrose/etiologia , Fibrose/prevenção & controle , Nefropatias/etiologia , Nefropatias/prevenção & controle , Receptores Citoplasmáticos e Nucleares/agonistas , Esteroides/farmacologia , Obstrução Ureteral/complicações , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroides/uso terapêutico , Proteínas de Sinalização YAPRESUMO
RATIONALE: Inflammatory stress induced by exposure to bacterial lipopolysaccharide causes hematopoietic stem cell expansion in the bone marrow niche, generating a cellular immune response. As an integral component of the hematopoietic stem cell niche, the bone marrow vasculature regulates the production and release of blood leukocytes, which protect the host against infection but also fuel inflammatory diseases. OBJECTIVE: We aimed to develop imaging tools to explore vascular changes in the bone marrow niche during acute inflammation. METHODS AND RESULTS: Using the TLR (Toll-like receptor) ligand lipopolysaccharide as a prototypical danger signal, we applied multiparametric, multimodality and multiscale imaging to characterize how the bone marrow vasculature adapts when hematopoiesis boosts leukocyte supply. In response to lipopolysaccharide, ex vivo flow cytometry and histology showed vascular changes to the bone marrow niche. Specifically, proliferating endothelial cells gave rise to new vasculature in the bone marrow during hypoxic conditions. We studied these vascular changes with complementary intravital microscopy and positron emission tomography/magnetic resonance imaging. Fluorescence and positron emission tomography integrin αVß3 imaging signal increased during lipopolysaccharide-induced vascular remodeling. Vascular leakiness, quantified by albumin-based in vivo microscopy and magnetic resonance imaging, rose when neutrophils departed and hematopoietic stem and progenitor cells proliferated more vigorously. CONCLUSIONS: Introducing a tool set to image bone marrow either with cellular resolution or noninvasively within the entire skeleton, this work sheds light on angiogenic responses that accompany emergency hematopoiesis. Understanding and monitoring bone marrow vasculature may provide a key to unlock therapeutic targets regulating systemic inflammation.
Assuntos
Medula Óssea/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Nicho de Células-Tronco , Estresse Fisiológico , Animais , Medula Óssea/patologia , Células Progenitoras Endoteliais/citologia , Feminino , Inflamação/diagnóstico por imagem , Integrina alfaVbeta3/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Imagem Multimodal/métodosRESUMO
Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Assuntos
Meios de Contraste/química , Complexos de Coordenação/química , Imageamento por Ressonância Magnética , Animais , Humanos , Estrutura Molecular , Elementos de Transição/químicaRESUMO
Complexes of Fe3+ engage in rich aqueous solution speciation chemistry in which discrete molecules can react with solvent water to form multinuclear µ-oxo and µ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and µ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chemistry to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, electron paramagnetic resonance spectroscopy, and X-ray crystallography measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiology, resulting in substantial observed relaxivity change. Controlling Fe3+ µ-oxo bridging interactions through rational ligand design and in response to local chemical environment offers a robust mechanism for biochemically responsive MR signal modulation.