RESUMO
Novel metal complexes have received much attention recently because of their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternatives to the currently used platinum-based drugs for cancer therapy, with less toxicity and fewer side effects. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidative states, low toxicity, and high selectivity for cancer cells. The present study evaluated the cytotoxic effects of a ruthenium complex, namely cis-[Ru(1,10-phenanthroline)2(imidazole)2]2+ (RuC), on human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells and analyzed metabolic parameters. RuC reduced HepG2 and HeLa cell viability at all tested concentrations (10, 50, and 100 nmol/L) at 48 h of incubation, based on the MTT, Crystal violet, and neutral red assays. The proliferation capacity of HepG2 cells did not recover, whereas HeLa cell proliferation partially recovered after RuC treatment. RuC also inhibited all states of cell respiration and increased the levels of the metabolites pyruvate and lactate in both cell lines. The cytotoxicity of RuC was higher than cisplatin (positive control) in both lineages. These results indicate that RuC affects metabolic functions that are related to the energy provision and viability of HepG2 and HeLa cells and is a promising candidate for further investigations that utilize models of human cervical adenocarcinoma and mainly hepatocellular carcinoma.
RESUMO
The present study evaluated the in vivo antitumor effects and toxicity of a new Ru(II) compound, cis-(Ru[phen]2[ImH]2)2+ (also called RuphenImH [RuC]), against Walker-256 carcinosarcoma in rats. After subcutaneous inoculation of Walker-256 cells in the right pelvic limb, male Wistar rats received 5 or 10mgkg-1 RuC orally or intraperitoneally (i.p.) every 3 days for 13 days. A positive control group (2mgkg-1 cisplatin) and negative control group (vehicle) were also used. Tumor progression was checked daily. After treatment, tumor weight, plasma biochemistry, hematology, oxidative stress, histology, and tumor cell respiration were evaluated. RuC was effective against tumors when administered i.p. but not orally. The highest i.p. dose of RuC (10mgkg-1) significantly reduced tumor volume and weight, induced oxidative stress in tumor tissue, reduced the respiration of tumor cells, and induced necrosis but did not induce apoptosis in the tumor. No clinical signs of toxicity or death were observed in tumor-bearing or healthy rats that were treated with RuC. These results suggest that RuC has antitumor activity through the modulation of oxidative stress and impairment of oxidative phosphorylation, thus promoting Walker-256 cell death without causing systemic toxicity. These effects make RuC a promising anticancer drug for clinical evaluation.