RESUMO
We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.
Assuntos
Lesões Encefálicas Traumáticas/terapia , Receptores CCR5/metabolismo , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores CCR5/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodosRESUMO
Stroke induces a plastic state in the brain. This period of enhanced plasticity leads to the sprouting of new axons, the formation of new synapses and the remapping of sensory-motor functions, and is associated with motor recovery. This is a remarkable process in the adult brain, which is normally constrained in its levels of neuronal plasticity and connectional change. Recent evidence indicates that these changes are driven by molecular systems that underlie learning and memory, such as changes in cellular excitability during memory formation. This Review examines circuit changes after stroke, the shared mechanisms between memory formation and brain repair, the changes in neuronal excitability that underlie stroke recovery, and the molecular and pharmacological interventions that follow from these findings to promote motor recovery in animal models. From these findings, a framework emerges for understanding recovery after stroke, central to which is the concept of neuronal allocation to damaged circuits. The translation of the concepts discussed here to recovery in humans is underway in clinical trials for stroke recovery drugs.
Assuntos
Córtex Cerebral/fisiopatologia , Plasticidade Neuronal/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Animais , HumanosRESUMO
Medical school research faculty is increasingly required to complete more comprehensive and time consuming compliance steps for regulatory oversight. These relate to animal studies, information technology, biosafety, and human resources. For physician-scientists, the additional role in clinical care adds to these research areas with regulatory compliance in patient care and ever-growing web trainings. The sum of all these compliance regimes is a considerable time and cost burden, diminished research performance, and disengagement of faculty from colleagues, collaborations, and institutions. Many research and clinical compliance processes were put in place, often using legacy systems, in well-meaning attempts to address straightforward regulations in humane animal care, safe use of biological agents, and medical care delivery. However, their accumulation and negative impact on faculty performance demand time, energy, and resources that impact academic productivity. There are solutions to a relentlessly increasing regulatory load for research faculty, which involve vertical integration, convergence, and performance assessment in medical school and health system compliance regimes. ANN NEUROL 2024;96:417-422.
Assuntos
Pesquisa Biomédica , Médicos , Faculdades de Medicina , Humanos , Pesquisa Biomédica/legislação & jurisprudência , Docentes de MedicinaRESUMO
OBJECTIVE: Training clinician-scientists is a primary objective of many academic neurology departments, as these individuals are uniquely positioned to perform insightful clinical or laboratory-based research informed both by clinical knowledge and their own experiences caring for patients. Despite its importance, training clinician-scientists has perhaps never been so challenging. The National Institute of Neurologic Disorders and Stroke (NINDS) R25 program was designed in an attempt to support these individuals, decrease the time needed to obtain National Institutes of Health K awards, and to help educate a cohort of trainees preparing for a career in academic neurology. We endeavored to describe the structure and features of the program while examining its outcomes. METHODS: R25 outcome data from 2009 to 2024 were reviewed. Statistical comparisons were made using 2-sided Mann-Whitney U testing. RESULTS: A total of 67% of adult neurologists who received an R25 had a successful application for a National Institutes of Health K award compared with 45% of adult neurologists who had not received R25 support (p < 0.0001). Among child neurologists, 73% who applied went on to receive K funding after R25 support, compared with 45% who had not been part of the R25 program (p < 0.001). The average time between completion of residency and obtaining a K award for R25 participants was decreased by 26 months among those with an MD/PhD degree, and 32 months for those with an MD degree compared with non-R25 individuals. INTERPRETATION: The R25 program has been successful in achieving its training goals, but stands as only one component of support for aspiring clinician-scientists. Investments and commitments made by academic neurology departments are key to supporting this success. ANN NEUROL 2024;96:625-632.
Assuntos
National Institute of Neurological Disorders and Stroke (USA) , Neurologia , Humanos , Neurologia/educação , Estados Unidos , Neurologistas , Pesquisa Biomédica/educação , Adulto , Pesquisadores/educaçãoRESUMO
Subcortical white matter stroke (WMS) is a progressive disorder which is demarcated by the formation of small ischemic lesions along white matter tracts in the CNS. As lesions accumulate, patients begin to experience severe motor and cognitive decline. Despite its high rate of incidence in the human population, our understanding of the cause and outcome of WMS is extremely limited. As such, viable therapies for WMS remain to be seen. This study characterizes myelin recovery following stroke and motor learning-based rehabilitation in a mouse model of subcortical WMS. Following WMS, a transient increase in differentiating oligodendrocytes occurs within the peri-infarct in young male adult mice, which is completely abolished in male aged mice. Compound action potential recording demonstrates a decrease in conduction velocity of myelinated axons at the peri-infarct. Animals were then tested on one of three distinct motor learning-based rehabilitation strategies (skilled reach, restricted access to a complex running wheel, and unrestricted access to a complex running wheel) for their capacity to induce repair. These studies determined that unrestricted access to a complex running wheel alone increases the density of differentiating oligodendrocytes in infarcted white matter in young adult male mice, which is abolished in aged male mice. Unrestricted access to a complex running wheel was also able to enhance conduction velocity of myelinated axons at the peri-infarct to a speed comparable to naive controls suggesting functional recovery. However, there was no evidence of motor rehabilitation-induced remyelination or myelin protection.SIGNIFICANCE STATEMENT White matter stroke is a common disease with no medical therapy. A form of motor rehabilitation improves some aspects of white matter repair and recovery.
Assuntos
Acidente Vascular Cerebral , Substância Branca , Humanos , Masculino , Camundongos , Animais , Idoso , Substância Branca/patologia , Acidente Vascular Cerebral/patologia , Bainha de Mielina/patologia , Oligodendroglia/fisiologia , Infarto/patologia , Atividade MotoraRESUMO
Recent insights into the frequency of occurrence and the genetic and mechanistic basis of nervous system disease have demonstrated that neurologic disorders occur as a spectrum across all ages. To meet future needs of patients with neurologic disease of all ages and prepare for increasing implementaton of precision therapies, greater integration of child and adult neurology residency training is needed. ANN NEUROL 2023;94:1005-1007.
Assuntos
Internato e Residência , Doenças do Sistema Nervoso , Neurologia , Adulto , Criança , Humanos , Neurologia/educação , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapiaRESUMO
Phosphodiesterase (PDE) inhibitors have been safely and effectively used in the clinic and increase the concentration of intracellular cyclic nucleotides (cAMP/cGMP). These molecules activate downstream mediators, including the cAMP response element-binding protein (CREB), which controls neuronal excitability and growth responses. CREB gain of function enhances learning and allocates neurons into memory engrams. CREB also controls recovery after stroke. PDE inhibitors are linked to recovery from neural damage and to stroke recovery in specific sites within the brain. PDE2A is enriched in cortex. In the present study, we use a mouse cortical stroke model in young adult and aged male mice to test the effect of PDE2A inhibition on functional recovery, and on downstream mechanisms of axonal sprouting, tissue repair, and the functional connectivity of neurons in recovering cortex. Stroke causes deficits in use of the contralateral forelimb, loss of axonal projections in cortex adjacent to the infarct, and functional disconnection of neuronal networks. PDE2A inhibition enhances functional recovery, increases axonal projections in peri-infarct cortex, and, through two-photon in vivo imaging, enhances the functional connectivity of motor system excitatory neurons. PDE2A inhibition after stroke does not have an effect on other aspects of tissue repair, such as angiogenesis, gliogenesis, neurogenesis, and inflammatory responses. These data suggest that PDE2A inhibition is an effective therapeutic approach for stroke recovery in the rodent and that it simultaneously enhances connectivity in peri-infarct neuronal populations.SIGNIFICANCE STATEMENT Inhibition of PDE2A enhances motor recovery, axonal projections, and functional connectivity of neurons in peri-infarct tissue. This represents an avenue for a pharmacological therapy for stroke recovery.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Infarto , Neurônios Motores , Neurogênese , Inibidores de Fosfodiesterase/farmacologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidoresRESUMO
BACKGROUND: Vascular dementia (VaD) is the accumulation of vascular lesions in the subcortical white matter of the brain. These lesions progress and there is no direct medical therapy. AIMS: To determine the specific cellular responses in VaD so as to provide molecular targets for therapeutic development. MATERIALS AND METHODS: Single-nucleus transcriptome analysis was performed in human periventricular white matter (PVWM) samples of VaD and normal control (NC) subjects. RESULTS: Differential analysis shows that cell type-specific transcriptomic changes in VaD are associated with the disruption of specific biological processes, including angiogenesis, immune activation, axonal injury and myelination. Each cell type in the neurovascular unit within white matter has a specific alteration in gene expression in VaD. In a central cell type for this disease, subcluster analysis of endothelial cells (EC) indicates that VaD contains a disease-associated EC subcluster that expresses genes associated with programmed cell death and a response to protein folding. Two other subpopulations of EC in VaD express molecular systems associated with regenerative processes in angiogenesis, and in axonal sprouting and oligodendrocyte progenitor cell maturation. CONCLUSION: This comprehensive molecular profiling of brain samples from patients with VaD reveals previously unknown molecular changes in cells of the neurovascular niche, and an attempt at regeneration in injured white matter.
Assuntos
Demência Vascular , Substância Branca , Encéfalo/metabolismo , Demência Vascular/genética , Demência Vascular/patologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Substância Branca/metabolismo , Substância Branca/patologiaRESUMO
OBJECTIVE: To propose postpartum recovery domains. DESIGN: Concept elicitation study. SETTING: Semi-structured interviews. POPULATION: Ten writing committee members and 50 stakeholder interviews (23 postpartum women, nine general obstetricians, five maternal and fetal medicine specialists, eight nurses and five obstetric anaesthetists). METHODS: Alternating interviews and focus group meetings until concept saturation was achieved (no new themes discussed in three consecutive interviews). Interviews were digitally recorded and transcribed, and an iterative coding process was used to identify domains. MAIN OUTCOME MEASURES: The primary outcome was to identify recovery domains. We also report key symptoms and concerns. Discussion frequency and importance scores (0-100; 0 = not important; 100 = vitally important to recovery) were used to rank domains. Discussion frequency was used to rank factors helping and hindering recovery, and to determine the greatest challenges experienced postpartum. RESULTS: Thirty-four interviews and two focus group meetings were performed. The 13 postpartum recovery domains identified, (ranked highest to lowest) were: psychosocial distress, surgical/medical factors, infant feeding and breast health, psychosocial support, pain, physical function, sleep, motherhood experience, infant health, fatigue, appearance, sexual function and cognition. The most frequently discussed factors facilitating postpartum recovery were: family support, lactation/breastfeeding support and partner support. The most frequently discussed factor hindering recovery was inadequate social support. The most frequent challenges reported were: breastfeeding (week 1), breastfeeding (week 3) and sleep (week 6). CONCLUSIONS: We propose 13 domains that comprehensively describe recovery in women delivering in a single centre within the USA. This provides a novel framework to study the postpartum recovery process. TWEETABLE ABSTRACT: We propose 13 postpartum recovery domains that provide a framework to study the recovery process following childbirth.
Assuntos
Parto Obstétrico , Pessoal de Saúde , Período Pós-Parto , Cuidado Pré-Natal , Adulto , Feminino , Grupos Focais , Humanos , Entrevistas como Assunto , Gravidez , Recuperação de Função Fisiológica , Estados UnidosRESUMO
Stroke is the leading cause of adult disability. Neurogenesis after stroke is associated with repair; however, the mechanisms regulating poststroke neurogenesis and its functional effect remain unclear. Here, we investigate multiple mechanistic routes of induced neurogenesis in the poststroke brain, using both a forelimb overuse manipulation that models a clinical neurorehabilitation paradigm, as well as local manipulation of cellular activity in the peri-infarct cortex. Increased activity in the forelimb peri-infarct cortex via either modulation drives increased subventricular zone (SVZ) progenitor proliferation, migration, and neuronal maturation in peri-infarct cortex. This effect is sensitive to competition from neighboring brain regions. By using orthogonal tract tracing and rabies virus approaches in transgenic SVZ-lineage-tracing mice, SVZ-derived neurons synaptically integrate into the peri-infarct cortex; these effects are enhanced with forelimb overuse. Synaptic transmission from these newborn SVZ-derived neurons is critical for spontaneous recovery after stroke, as tetanus neurotoxin silencing specifically of the SVZ-derived neurons disrupts the formation of these synaptic connections and hinders functional recovery after stroke. SVZ-derived neurogenesis after stroke is activity-dependent, region-specific, and sensitive to modulation, and the synaptic connections formed by these newborn cells are functionally critical for poststroke recovery.
Assuntos
Ventrículos Laterais/fisiopatologia , Neurogênese/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Infarto Encefálico/fisiopatologia , Membro Anterior/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologiaRESUMO
AIMS: To compare short and long-term outcomes after tibial plateau levelling osteotomy (TPLO) and lateral fabello-tibial suture (LFTS) techniques for the management of cranial cruciate ligament disease in small dogs with high tibial plateau angles (TPA). METHODS: In this retrospective study, the medical records of two veterinary specialist practices in the United Kingdom were searched for dogs (<20â kg) that underwent TPLO or LFTS between 2000 and 2010, and had a preoperative radiographic TPA >30° with either short-term (6 weeks) and/or long-term (>3 months) follow-up data. Data collected at a 6-week post-surgical re-examination was derived from orthopaedic examination and radiographic assessment and included the incidence of major and minor complications and scoring of the short-term outcome. Long-term outcome was scored based on results of a subjective owner questionnaire and veterinary orthopaedic examination. RESULTS: A total of 61 (84 stifles) dogs were included in the study: 24 (30 stilfes) and 37 (54 stifles) dogs underwent LFTS and TPLO, respectively. Long-term clinical outcome was different (p = 0.017) between groups; 15/15 stifles in the TPLO group had a good or excellent long-term clinical outcome, compared to 4/8 (50%) in the LFTS group. There was no evidence of a difference in short-term post-operative outcome or owner subjective long-term outcome between treatment groups.Stifles in the LFTS group were more likely (p = 0.027) to have palpable stifle pain at long-term follow-up. Owners reported that 5/16 (31.3%) dogs in the LFTS group required oral non-steroidal anti-inflammatory drug (NSAID) treatment at least monthly (4/5 required daily treatment), whereas no dogs in the TPLO group required treatment with NSAID more frequently than three times per year (p = 0.011).No correlation was found between short-term outcome and owner subjective long-term outcome but there was a positive correlation between short-term outcome and long-term clinical outcome.There was no evidence of a difference in overall major complication rates between treatment groups. The occurrence of complications was associated with heavier body weight at the time of surgery. No other variables were shown to be risk factors for complications. CONCLUSION AND CLINICAL RELEVANCE: Small breed dogs with high TPA that underwent TPLO had better long-term clinical outcomes and were less likely to require NSAID administration than those that underwent LFTS. The risk of complication increased with the weight of the dog at surgery. There was a positive correlation between short-term outcome and long-term clinical outcome.
Assuntos
Ligamento Cruzado Anterior , Doenças do Cão , Animais , Ligamento Cruzado Anterior/cirurgia , Anti-Inflamatórios não Esteroides , Doenças do Cão/etiologia , Doenças do Cão/cirurgia , Cães , Osteotomia/métodos , Osteotomia/veterinária , Estudos Retrospectivos , Suturas , Tíbia/cirurgiaRESUMO
Stroke is a debilitating disease. Current effective therapies for stroke recovery are limited to neurorehabilitation. Most stroke recovery occurs in a limited and early time window. Many of the mechanisms of spontaneous recovery after stroke parallel mechanisms of normal learning and memory. While various efforts are in place to identify potential drug targets, an emerging approach is to understand biological correlates between learning and stroke recovery. This review assesses parallels between biological changes at the molecular, structural, and functional levels during learning and recovery after stroke, with a focus on drug and cellular targets for therapeutics.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Aprendizagem , Plasticidade Neuronal , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/tratamento farmacológicoRESUMO
Despite substantial recent progress in network neuroscience, the impact of stroke on the distinct features of reorganizing neuronal networks during recovery has not been defined. Using a functional connections-based approach through 2-photon in vivo calcium imaging at the level of single neurons, we demonstrate for the first time the functional connectivity maps during motion and nonmotion states, connection length distribution in functional connectome maps and a pattern of high clustering in motor and premotor cortical networks that is disturbed in stroke and reconstitutes partially in recovery. Stroke disrupts the network topology of connected inhibitory and excitatory neurons with distinct patterns in these 2 cell types and in different cortical areas. These data indicate that premotor cortex displays a distinguished neuron-specific recovery profile after stroke.
Assuntos
Atividade Motora , Córtex Motor/fisiopatologia , Neurônios/fisiologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Animais , Sinalização do Cálcio , Masculino , Camundongos Transgênicos , Imagem ÓpticaRESUMO
Subcortical white matter stroke is a common stroke subtype. White matter stroke stimulates adjacent oligodendrocyte progenitor cells (OPCs) to divide and migrate to the lesion, but stroke OPCs have only a limited differentiation into mature oligodendrocytes. To understand the molecular systems that are active in OPC responses in white matter stroke, OPCs were virally labeled and laser-captured in the region of partial damage adjacent to the infarct in male mice. RNAseq indicates two distinct OPC transcriptomes associated with the proliferative and limited-regeneration phases of OPCs after stroke. Molecular pathways related to nuclear receptor activation, ECM turnover, and lipid biosynthesis are activated during proliferative OPC phases after stroke; inflammatory and growth factor signaling is activated in the later stage of limited OPC differentiation. Within ECM proteins, Matrilin-2 is induced early after stroke and then rapidly downregulated. Prediction of upstream regulators of the OPC stroke transcriptome identifies several candidate molecules, including Inhibin A-a negative regulator of Matrilin-2. Inhibin A is induced in reactive astrocytes after stroke, including in humans. In functional assays, Matrilin-2 induces OPC differentiation, and Inhibin A inhibits OPC Matrilin-2 expression and inhibits OPC differentiation. In vivo, Matrilin-2 promotes motor recovery after white matter stroke, and promotes OPC differentiation and ultrastructural evidence of remyelination. These studies show that white matter stroke induces an initial proliferative and reparative response in OPCs, but this is blocked by a local cellular niche where reactive astrocytes secrete Inhibin A, downregulating Matrilin-2 and blocking myelin repair and recovery.SIGNIFICANCE STATEMENT Stroke in the cerebral white matter of the brain is common. The biology of damage and recovery in this stroke subtype are not well defined. These studies use cell-specific RNA sequencing and gain-of-function studies to show that white matter stroke induces a glial signaling niche, present in both humans and mice, between reactive astrocytes and oligodendrocyte progenitor cells. Astrocyte secretion of Inhibin A and downregulation of oligodendrocyte precursor production of Matrilin-2 limit OPC differentiation, tissue repair, and recovery in this disease.
Assuntos
Astrócitos/patologia , Oligodendroglia/patologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Animais , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/fisiologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/genética , Substância Branca/fisiologiaRESUMO
The repair and recovery of the brain after stroke is a field that is emerging in its preclinical science and clinical trials. However, recent large, multicenter clinical trials have been negative, and conflicting results emerge on biological targets in preclinical studies. The coalescence of negative clinical translation and confusion in preclinical studies raises the suggestion that perhaps the field of stroke recovery faces a fate similar to stroke neuroprotection, with interesting science ultimately proving difficult to translate to the clinic. This review highlights improvements in 4 areas of the stroke neural repair field that should reorient the field toward successful clinical translation: improvements in rodent genetic models of stroke recovery, consideration of the biological target in stroke recovery, stratification in clinical trials, and the use of appropriate clinical trial end points.
Assuntos
Encéfalo/fisiopatologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , HumanosRESUMO
While much of the research on neurodegenerative diseases has focused on neurons, non-neuronal cells are also affected. The extent to which glia and other non-neuronal cells are causally involved in disease pathogenesis versus more passively responding to disease is an area of active research. This is complicated by the fact that there is rarely one known cause of neurodegenerative diseases; rather, these disorders likely involve feedback loops that perpetuate dysfunction. Here, we will review genetic as well as experimental evidence that suggest that non-neuronal cells are at least partially driving disease pathogenesis in numerous neurodegenerative disorders, including Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and Parkinson's disease.
Assuntos
Encéfalo/patologia , Doenças Neurodegenerativas/patologia , Neuroglia/patologia , Neurônios/patologia , Animais , Astrócitos/patologia , HumanosRESUMO
Subcortical white matter stroke (WMS) accounts for 25% of all incidences of stroke and results in severe motor and cognitive disability. WMS stands as the second leading cause of dementia and is immensely prevalent in older adults. In a startlingly statistic, a majority of human beings will present WMS by 80â¯years of age. Early ischemic lesions produced by WMS are asymptomatic and termed "silent strokes". WMS is, however, progressive with both the size of the lesions and their distribution, increasing as patients age. Pathological analyses in both postmortem human tissue samples and mouse models of WMS demonstrate myelin degeneration as a chief hallmark of WMS. This suggests that the development of rehabilitative strategies in human WMS will necessitate an understanding of the pathophysiology of demyelination and remyelination following ischemic injury. This review will address our current understanding of WMS from human imaging studies, the development of rodent models of WMS, the mechanistic underpinning of myelin degeneration following WMS as well as remyelination dynamics in the adult brain.
Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Doenças Desmielinizantes/fisiopatologia , Remielinização/fisiologia , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Envelhecimento/fisiologia , Animais , Doenças Desmielinizantes/patologia , HumanosRESUMO
Stroke is the primary cause of disability due to the brain's limited ability to regenerate damaged tissue. After stroke, an increased inflammatory and immune response coupled with severely limited angiogenesis and neuronal growth results in a stroke cavity devoid of normal brain tissue. In the adult, therapeutic angiogenic materials have been used to repair ischaemic tissues through the formation of vascular networks. However, whether a therapeutic angiogenic material can regenerate brain tissue and promote neural repair is poorly understood. Here we show that the delivery of an engineered immune-modulating angiogenic biomaterial directly to the stroke cavity promotes tissue formation de novo, and results in axonal networks along thee generated blood vessels. This regenerated tissue produces functional recovery through the established axonal networks. Thus, this biomaterials approach generates a vascularized network of regenerated functional neuronal connections within previously dead tissue and lays the groundwork for the use of angiogenic materials to repair other neurologically diseased tissues.
Assuntos
Materiais Biocompatíveis , Encéfalo/patologia , Neovascularização Fisiológica , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Heparina/administração & dosagem , Humanos , Nanopartículas/administração & dosagem , Neurogênese , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
OBJECTIVES: N-acetylcysteine (NAC) is a clinically approved thiol-containing redox modulatory compound currently in trials for many neurological and psychiatric disorders. Although generically labeled as an "antioxidant," poor understanding of its site(s) of action is a barrier to its use in neurological practice. Here, we examined the efficacy and mechanism of action of NAC in rodent models of hemorrhagic stroke. METHODS: Hemin was used to model ferroptosis and hemorrhagic stroke in cultured neurons. Striatal infusion of collagenase was used to model intracerebral hemorrhage (ICH) in mice and rats. Chemical biology, targeted lipidomics, arachidonate 5-lipoxygenase (ALOX5) knockout mice, and viral-gene transfer were used to gain insight into the pharmacological targets and mechanism of action of NAC. RESULTS: NAC prevented hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent ALOX5 activity. NAC efficacy required increases in glutathione and is correlated with suppression of reactive lipids by glutathione-dependent enzymes such as glutathione S-transferase. Accordingly, its protective effects were mimicked by chemical or molecular lipid peroxidation inhibitors. NAC delivered postinjury reduced neuronal death and improved functional recovery at least 7 days following ICH in mice and can synergize with clinically approved prostaglandin E2 (PGE2 ). INTERPRETATION: NAC is a promising, protective therapy for ICH, which acted to inhibit toxic arachidonic acid products of nuclear ALOX5 that synergized with exogenously delivered protective PGE2 in vitro and in vivo. The findings provide novel insight into a target for NAC, beyond the generic characterization as an antioxidant, resulting in neuroprotection and offer a feasible combinatorial strategy to optimize efficacy and safety in dosing of NAC for treatment of neurological disorders involving ferroptosis such as ICH. Ann Neurol 2018;84:854-872.