Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(6): 2699-704, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133658

RESUMO

Hemoproteins, hemoglobin and myoglobin, once released from cells can cause severe oxidative damage as a consequence of heme redox cycling between ferric and ferryl states that generates radical species that induce lipid peroxidation. We demonstrate in vitro that acetaminophen inhibits hemoprotein-induced lipid peroxidation by reducing ferryl heme to its ferric state and quenching globin radicals. Severe muscle injury (rhabdomyolysis) is accompanied by the release of myoglobin that becomes deposited in the kidney, causing renal injury. We previously showed in a rat model of rhabdomyolysis that redox cycling between ferric and ferryl myoglobin yields radical species that cause severe oxidative damage to the kidney. In this model, acetaminophen at therapeutic plasma concentrations significantly decreased oxidant injury in the kidney, improved renal function, and reduced renal damage. These findings also provide a hypothesis for potential therapeutic applications for acetaminophen in diseases involving hemoprotein-mediated oxidative injury.


Assuntos
Acetaminofen/farmacologia , Hemeproteínas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Insuficiência Renal/prevenção & controle , Rabdomiólise/complicações , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Catálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hemeproteínas/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Ferro/química , Ferro/metabolismo , Masculino , Mioglobina/química , Mioglobina/metabolismo , Oxirredução/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/etiologia , Insuficiência Renal/patologia , Rabdomiólise/metabolismo , Espectrofotometria
2.
Chem Res Toxicol ; 25(8): 1643-51, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22799741

RESUMO

Metabolic profiling of macrophage metabolic response upon exposure to 4-hydroxynonenal (HNE) demonstrates that HNE does not simply inactivate superoxide-generating enzymes but also could be responsible for the impairment of downfield signaling pathways. Multianalyte microphysiometry (MAMP) was employed to simultaneously measure perturbations in extracellular acidification, lactate production, and oxygen consumption for the examination of aerobic and anaerobic pathways. Combining the activation of oxidative burst with phorbol myristate acetate (PMA) and the immunosuppression with HNE, the complex nature of HNE toxicity was determined to be concentration- and time-dependent. Further analysis was utilized to assess the temporal effect of HNE on reactive oxygen species (ROS) production and on protein kinase C (PKC). Increased levels of HNE with decreasing PKC activity suggest that PKC is a target for HNE adductation prior to oxidative burst. Additionally, localization of PKC to the cell membrane was prevented with the introduction of HNE, demonstrating a consequence of HNE adductation on NADPH activation. The impairment of ROS by HNE suggests that HNE has a greater role in foam cell formation and tissue damage than is already known. Although work has been performed to understand the effect of HNE's regulation of specific signaling pathways, details regarding its involvement in cellular metabolism as a whole are generally unknown. This study examines the impact of HNE on macrophage oxidative burst and identifies PKC as a key protein for HNE suppression and eventual metabolic response.


Assuntos
Aldeídos/metabolismo , Aldeídos/química , Aldeídos/toxicidade , Animais , Linhagem Celular , Técnicas Eletroquímicas , Eletrodos , Luminol/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , NADP/química , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia
3.
Sensors (Basel) ; 9(3): 2117-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22574003

RESUMO

Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP) that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production) in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

4.
J Biol Inorg Chem ; 11(7): 917-29, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16868743

RESUMO

The most common and deadly form of the malaria parasite, Plasmodium falciparum, is responsible for 1.5-2.7 million deaths and 300-500 million acute illnesses annually [Bremen in J. Trop. Med. Hyg. 64:1-11 (2001); World Health Organization (2002)]. Hemozoin, the biomineral formed to detoxify the free heme produced during parasitic hemoglobin catabolism, has long been suspected of contributing to the pathological immunodeficiencies that occur during malarial infection. While there is a growing consensus in the literature that native hemozoin maintains immunosuppressive activity, there is considerable controversy over the reactivity of the synthetic form, beta-hematin (BH). Given the emerging importance of hemozoin in modulating a host immune response to malarial infection, a careful examination of the effects of the constitutive components of the malaria pigment on macrophage response has been made in order to clarify the understanding of this process. Herein, we present evidence that BH alone is unable to inhibit stimulation of NADPH oxidase and inducible nitric oxide synthase, the key enzymes involved in oxidative burst, and is sensitive to the microbicidal agents of these enzymes both in vitro and in vivo. Further, by systematically examining each of the malaria pigment's components, we were able to dissect their impact on the immune reactivity of a macrophage model cell line. Reactions between BH and red blood cell (RBC) ghosts effectively reconstituted the observed immunomodulatory reactivity of native hemozoin. Together, these results suggest that the interaction between hemozoin and the RBC lipids results in the generation of toxic products and that these products are responsible for disrupting macrophage function in vivo.


Assuntos
Hemeproteínas/imunologia , Hemeproteínas/farmacologia , Imunossupressores/metabolismo , Macrófagos/metabolismo , Malária/imunologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Hemeproteínas/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Imunossupressores/química , Imunossupressores/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Microscopia Confocal , Estrutura Molecular , NADPH Oxidases/efeitos dos fármacos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA