Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Neurophysiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958285

RESUMO

The relative contributions of proprioceptive, vestibular, and visual sensory cues to balance control change depending on their availability and reliability. This sensory reweighting is classically supported by non-linear sway responses to increasing visual surround and/or surface tilt amplitudes. However, recent evidence indicates that visual cues are reweighted based on visual tilt velocity rather than tilt amplitude. Therefore, we designed a study to specifically test the hypothesized velocity dependence of reweighting while expanding on earlier findings for visual reweighting by testing proprioceptive reweighting for standing balance on a tilting surface. Twenty healthy young adults stood with their eyes closed on a toes-up/-down tilting platform. We designed four pseudo-random tilt sequences with either a slow (S) or a fast (F) tilt velocity and different peak-to-peak amplitudes. We used model-based interpretations of measured sway characteristics to estimate the proprioceptive sensory weight (Wprop) within each trial. Additionally, root-mean-square values of measured body centre of mass sway amplitude (RMS) and velocity (RMSv) were calculated for each tilt sequence. Wprop, RMS, and RMSv values varied depending on the stimulus velocity, exhibiting large effects (all Cohen's d's > 1.10). In contrast, we observed no significant differences across stimulus amplitudes for Wprop (Cohen's d's: 0.02-0.16) and, compared to the differences in velocity, there were much smaller changes in RMS and RMSv values (Cohen's d's: 0.05 - 0.91). These results confirmed the hypothesized velocity, rather than amplitude, dependence of sensory reweighting.

2.
J Physiol ; 601(12): 2473-2492, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060169

RESUMO

During unperturbed bipedal standing, postural control is governed primarily by subcortical and spinal networks. However, it is unclear if cortical networks begin to play a greater role when stability is threatened. This study investigated how initial and repeated exposure to a height-related postural threat modulates cortical potentials time-locked to discrete centre of pressure (COP) events during standing. Twenty-seven young adults completed a series of 90-s standing trials at LOW (0.8 m above the ground, away from edge) and HIGH (3.2 m above the ground, at edge) threat conditions. Three LOW trials were completed before and after 15 consecutive HIGH trials. Participants stood on a force plate while electroencephalographic (EEG) activity was recorded. To examine changes in cortical activity in response to discrete postural events, prominent forward and backward peaks in the anterior-posterior COP time series were identified. EEG data were waveform-averaged to these events and the amplitude of event-related cortical activity was calculated. At the LOW condition, event-related potentials (ERPs) were scarcely detectable. However, once individuals stood at the HIGH condition, clear ERPs were observed, with more prominent potentials being observed for forward (edge-directed), compared to backward, COP events. Since forward COP peaks accelerate the centre of mass away from the platform edge, these results suggest there is intermittent recruitment of cortical networks that may be involved in the detection and minimization of postural sway toward a perceived threat. This altered cortical engagement appears resistant to habituation and may contribute to threat-related balance changes that persist following repeated threat exposure. KEY POINTS: While standing balance control is regulated primarily by subcortical and spinal processes, it is unclear if cortical networks play a greater role when stability is threatened. This study examined how cortical potentials time-locked to prominent peaks in the anterior-posterior centre of pressure (COP) time series were modulated by exposure to a height-related postural threat. While cortical potentials recorded over the primary sensorimotor cortices were scarcely detectable under non-threatening conditions, clear cortical potentials were observed when individuals stood under conditions of height-related threat. Cortical potentials were larger in response to COP peaks directed toward, compared to away from, the platform edge, and showed limited habituation with repeated threat exposure. Since forward COP peaks accelerate the centre of mass away from the platform edge, these findings suggest that when balance is threatened, there is intermittent recruitment of cortical networks, which may minimize the likelihood of falling in the direction of a perceived threat.


Assuntos
Medo , Posição Ortostática , Adulto Jovem , Humanos , Medo/fisiologia , Equilíbrio Postural/fisiologia , Fatores de Tempo
3.
J Neurophysiol ; 130(3): 585-595, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37492897

RESUMO

It has been proposed that sensory force/pressure cues are integrated within a positive feedback mechanism, which accounts for the slow dynamics of human standing behavior and helps align the body with gravity. However, experimental evidence of this mechanism remains scarce. This study tested predictions of a positive torque feedback mechanism for standing balance, specifically that differences between a "reference" torque and actual torque are self-amplified, causing the system to generate additional torque. Seventeen healthy young adults were positioned in an apparatus that permitted normal sway at the ankle until a brake on the apparatus was applied, discreetly "locking" body movement during stance. Once locked, a platform positioned under the apparatus remained in place (0 mm) or slowly translated backward (3 mm or 6 mm), tilting subjects forward. Postural behavior was characterized by two distinct responses: the center of pressure (COP) offset (i.e., change in COP elicited by the surface translation) and the COP drift (i.e., change in COP during the sustained tilt). Model simulations were performed using a linear balance control model containing torque feedback to provide a conceptual basis for the interpretation of experimental results. Holding the body in sustained tilt positions resulted in COP drifting behavior, reflecting attempts of the balance control system to restore an upright position through increases in plantar flexor torque. In line with predictions of positive torque feedback, larger COP offsets led to faster increases in COP over time. These findings provide experimental support for a positive torque feedback mechanism involved in the control of standing balance.NEW & NOTEWORTHY Using model simulations and a novel experimental approach, we tested behavioral predictions of a sensory torque feedback mechanism involved in the control of upright standing. Torque feedback is thought to reduce the effort required to stand and play a functional role in slowly aligning the body with gravity. Our results provide experimental evidence of a torque feedback mechanism and offer new and valuable insights into the sensorimotor control of human balance.


Assuntos
Tornozelo , Equilíbrio Postural , Adulto Jovem , Humanos , Retroalimentação , Torque , Movimento , Retroalimentação Sensorial
4.
J Physiol ; 599(14): 3611-3625, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34047370

RESUMO

KEY POINTS: We examined the influence of cutaneous feedback from the heel and metatarsal regions of the foot sole on the soleus stretch reflex pathway during standing. We found that heel electrical stimuli suppressed and metatarsal stimuli enhanced the soleus vibration response. Follow-up experiments indicated that the interaction between foot sole cutaneous feedback and the soleus vibration response was likely not mediated by presynaptic inhibition and was contingent upon a modulation at the ⍺-motoneuron pool level. The spatially organized interaction between cutaneous feedback from the foot sole and the soleus vibration response provides information about how somatosensory information is combined to appropriately respond to perturbations during standing. ABSTRACT: Cutaneous feedback from the foot sole provides balance-relevant information and has the potential to interact with spinal reflex pathways. In this study, we examined how cutaneous feedback from the foot sole (heel and metatarsals) influenced the soleus response to proprioceptive stimuli during standing. We delivered noisy vibration (10-115 Hz) to the right Achilles tendon while we intermittently applied electrical pulse trains (five 1-ms pulses at 200 Hz, every 0.8-1.0 s) to the skin under either the heel or the metatarsals of the ipsilateral foot sole. We analysed time-dependent (referenced to cutaneous stimuli) coherence and cross-correlations between the vibration acceleration and rectified soleus EMG. Vibration-EMG coherence was observed across a bandwidth of ∼10-80 Hz, and coherence was suppressed by heel but enhanced by metatarsal cutaneous stimuli. Cross-correlations showed soleus EMG was correlated with the vibration (∼40 ms lag) and cross-correlations were also suppressed by heel (from 104-155 ms) but enhanced by metatarsal (from 76-128 ms) stimuli. To examine the neural mechanisms mediating this reflex interaction, we conducted two further experiments to probe potential contributions from (1) presynaptic inhibition, and (2) modulations at the ⍺- and γ-motoneuron pools. Results suggest the cutaneous interactions with the stretch reflex pathway required a modulation at the ⍺-motoneuron pool and were likely not mediated by presynaptic inhibition. These findings demonstrate that foot sole cutaneous information functionally tunes the stretch reflex pathway during the control of upright posture and balance.


Assuntos
Tendão do Calcâneo , Ossos do Metatarso , Estimulação Elétrica , Eletromiografia , Reflexo H , Calcanhar , Humanos , Músculo Esquelético , Reflexo de Estiramento
5.
J Physiol ; 598(22): 5231-5243, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32822066

RESUMO

KEY POINTS: Proprioceptive sensory information from the ankle joint is critical for the control of upright posture and balance. We examined the influence of age (n = 54 healthy adults, 20-82 years old) on lower limb muscle responses to proprioceptive perturbations evoked by Achilles tendon vibration during standing. The frequency bandwidth of the muscle response became narrower, and the gain (the muscle response relative to the stimulus) and scaling (increases in response amplitude with increases in stimulus amplitude) decreased with age. Mechanics of the muscle-tendon unit (mechanical admittance) did not differ with age during standing, and thus probably did not mediate the age-related changes observed in soleus muscle responses to vibration. These findings add to our understanding of how altered proprioceptive responses may contribute to impaired mobility and falls with ageing. ABSTRACT: Proprioceptive information from the ankle joint plays an important role in the control of upright posture and balance. Ageing influences many components of the sensorimotor system, which leads to poor mobility and falls. However, little is known about the influence of age on the characteristics of short latency muscle responses to proprioceptive stimuli during standing across frequencies that are encoded by muscle spindles. We examined the frequency characteristics of the soleus muscle response to noisy (10-115 Hz) Achilles tendon vibration during standing in 54 healthy adults across a broad age range (20-82 years). The results showed the frequency bandwidth of the soleus response (vibration-electromyography coherence) became progressively narrower with ageing. Coherence was significantly lower in middle-aged relative to young adults between ∼7-11 and 28-62 Hz, lower in older relative to middle-aged adults between ∼30-50 Hz and lower in older relative to young adults between ∼7-64 Hz. Muscle response gain was similar between age groups at low frequencies, although gain was lower in older relative to young adults between ∼28-54 Hz. Across the age range, the response amplitude (peak-to-peak cross-covariance) and the scaling of the response with stimulus amplitude were both negatively correlated with age. Muscle-tendon mechanics (admittance) did not differ with age, suggesting this did not mediate differences in soleus responses. Our findings suggest there is a progressive change in the soleus response to proprioceptive stimuli with ageing during standing, which could contribute to poorer mobility and falls.


Assuntos
Tendão do Calcâneo , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético , Equilíbrio Postural , Propriocepção , Vibração , Adulto Jovem
6.
Ear Hear ; 41 Suppl 1: 107S-119S, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33105265

RESUMO

Recent epidemiological findings of associations between hearing loss (HL) and poorer mobility and higher falls risk have increased the demand for ecologically valid experimental research to determine the potential mechanisms underlying human hearing-balance relationships. This review provides an overview of the laboratory-based approaches to studying human balance, identifies crucial factors that should be considered to improve the ecological validity of hearing-balance research, and provides a critical review of the scientific literature to date on the effects of HL on balance. Most present studies can be subdivided into those that examine balance changes due to the effects of (1) auditory suppression in individuals with normal hearing, (2) HL with and without hearing aids, and (3) cochlear implants in children and adults. To allow for meaningful comparisons, we based our in-depth critical review on studies that met minimum criteria of having at least one objective kinetic or kinematic measure of standing balance during a two-legged stance with feet side-by-side, for at stance duration of at least 30 sec. With this minimum criterion in place, we found mixed evidence that hearing suppression, HL, or hearing devices affects postural stability, especially when other sensory information is available and/or reliable, and task demands are relatively low. However, hearing may become more important when multiple sensory systems become unreliable, task demands, or cognitive impairments are greater, or when sounds provide important auditory cues to assist with orientation or provide early detection of an impending balance disturbance. However, more research is clearly needed, because there is a wide range of technical and experimental differences and limitations observed across the present literature. To address these gaps, we have provided a number of recommendations and suggested priorities for future research to provide the ecologically valid, reliable, and reproducible evidence needed to uncover any potential relationships between HL, balance, and falls.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Auxiliares de Audição , Perda Auditiva , Adulto , Criança , Surdez/cirurgia , Humanos , Equilíbrio Postural
7.
Ear Hear ; 41 Suppl 1: 5S-19S, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33105255

RESUMO

Ecological validity is a relatively new concept in hearing science. It has been cited as relevant with increasing frequency in publications over the past 20 years, but without any formal conceptual basis or clear motive. The sixth Eriksholm Workshop was convened to develop a deeper understanding of the concept for the purpose of applying it in hearing research in a consistent and productive manner. Inspired by relevant debate within the field of psychology, and taking into account the World Health Organization's International Classification of Functioning, Disability, and Health framework, the attendees at the workshop reached a consensus on the following definition: "In hearing science, ecological validity refers to the degree to which research findings reflect real-life hearing-related function, activity, or participation." Four broad purposes for striving for greater ecological validity in hearing research were determined: A (Understanding) better understanding the role of hearing in everyday life; B (Development) supporting the development of improved procedures and interventions; C (Assessment) facilitating improved methods for assessing and predicting ability to accomplish real-world tasks; and D (Integration and Individualization) enabling more integrated and individualized care. Discussions considered the effects of variables and phenomena commonly present in hearing-related research on the level of ecological validity of outcomes, supported by examples from a few selected outcome domains and for different types of studies. Illustrated with examples, potential strategies were offered for promoting a high level of ecological validity in a study and for how to evaluate the level of ecological validity of a study. Areas in particular that could benefit from more research to advance ecological validity in hearing science include: (1) understanding the processes of hearing and communication in everyday listening situations, and specifically the factors that make listening difficult in everyday situations; (2) developing new test paradigms that include more than one person (e.g., to encompass the interactive nature of everyday communication) and that are integrative of other factors that interact with hearing in real-life function; (3) integrating new and emerging technologies (e.g., virtual reality) with established test methods; and (4) identifying the key variables and phenomena affecting the level of ecological validity to develop verifiable ways to increase ecological validity and derive a set of benchmarks to strive for.


Assuntos
Auxiliares de Audição , Audição , Percepção Auditiva , Compreensão , Humanos , Projetos de Pesquisa
8.
Eur J Appl Physiol ; 120(8): 1827-1839, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32524224

RESUMO

PURPOSE: Landing involves a tuned anticipatory control to allow for soft and safe contact with the ground. Fearful situations are known to affect postural control strategies during standing, but it is still unclear how fear interferes with the control of a voluntary dynamic task requiring coordination between posture and movement. METHODS: Ground reaction forces, limb movements, physiological arousal, and perceived levels of confidence and fear of falling were recorded when hopping off a box to a platform situated 0.8 m above ground and 3.2 m above ground. RESULTS: Height induced a perceived threat as arousal was augmented by the elevated surface for all subjects. Threat induced by height modifies the way participants land, leading to a stiffer landing, as evidenced by an increased loading rate at touchdown during high threat conditions. Greater psychological and physiological changes are associated with greater changes in the control of landing: individuals that are less confident/more fearful appear to compensate for this stiffer landing, by slowing down their landing. CONCLUSION: Threatening conditions induces a harder contact to the ground, but the strategy is dependent of the level of confidence/fear. Less confident/more fearful participants are more focused on coping strategy and adopt a more cautious behaviour.


Assuntos
Acidentes por Quedas , Antecipação Psicológica , Equilíbrio Postural/fisiologia , Desempenho Psicomotor , Adulto , Medo , Feminino , Humanos , Masculino , Movimento
9.
J Neurophysiol ; 122(5): 2119-2129, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553669

RESUMO

To probe the frequency characteristics of somatosensory responses in the triceps surae muscles, we previously applied suprathreshold noisy vibration to the Achilles tendon and correlated it with ongoing triceps surae muscle activity (recorded via surface EMG) during standing. Stronger responses to tendon stimuli were observed in soleus (Sol) relative to medial gastrocnemius (MGas) surface EMG; however, it is unknown whether differences in motor unit activity or limitations of surface EMG could have influenced this finding. Here, we inserted indwelling EMG into Sol and MGas to record the activity of single motor units while we applied noisy vibration (10-115 Hz) to the right Achilles tendon of standing participants. We analyzed the relationship between vibration acceleration and the spike activity of active single motor units through estimates of coherence, gain, phase, and cross-covariance. We also applied sinusoidal vibration at frequencies from 10 to 100 Hz (in 5-Hz increments) to examine whether motor units demonstrate nonlinear synchronization or phase locking at higher frequencies. Relative to MGas single motor units, Sol units demonstrated stronger coherence and higher gain with noisy vibration across a bandwidth of 7-68 Hz, and larger peak-to-peak cross-covariance at all four stimulus amplitudes examined. Sol and MGas motor unit activity was modulated over the time course of the sinusoidal stimuli across all frequencies, but their phase-locking behavior was minimal. These findings suggest Sol plays a prominent role in responding to disturbances transmitted through the Achilles tendon across a broad frequency band during standing.NEW & NOTEWORTHY We examined the relationship between Achilles tendon stimuli and spike times of single soleus (Sol) and medial gastrocnemius (MGas) motor units during standing. Relative to MGas, Sol units demonstrated stronger coherence and higher gain with noisy stimuli across a bandwidth of 7-68 Hz. Sol and MGas units demonstrated minimal nonlinear phase locking with sinusoidal stimuli. These findings indicate Sol plays a prominent role in responding to tendon stimuli across a broad frequency band.


Assuntos
Tendão do Calcâneo/fisiologia , Músculo Esquelético/fisiologia , Posição Ortostática , Vibração , Adulto , Potencial Evocado Motor , Retroalimentação Sensorial , Feminino , Humanos , Masculino , Contração Muscular
10.
Psychol Res ; 83(3): 445-458, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29110077

RESUMO

Individuals report directing attention toward and away from multiple sources when standing under height-related postural threat, and these changes in attention focus are associated with postural control modifications. As it is unknown whether these changes generalize to other types of threat situations, this study aimed to quantify changes in attention focus and examine their relationship with postural control changes in response to a direct threat to stability. Eighty young adults stood on a force plate fixed to a translating platform. Three postural threat conditions were created by altering the expectation of, and prior experience with, a postural perturbation: no threat of perturbation, threat without perturbation experience, and threat with perturbation experience. When threatened, participants were more anxious and reported directing more attention to movement processes, threat-related stimuli, and self-regulatory strategies, and less to task-irrelevant information. Postural sway amplitude and frequency increased with threat, with greater increases in frequency and smaller increases in amplitude observed with experience. Without experience, threat-related changes in postural control were accounted for by changes in anxiety; larger changes in anxiety were related to larger changes in sway amplitude. With experience, threat-related postural control changes were accounted for by changes in attention focus; increases in attention to movement processes were related to greater forward leaning and increases in sway amplitude, while increases in attention to self-regulatory strategies were related to greater increases in sway frequency. Results suggest that relationships between threat-related changes in anxiety, attention focus, and postural control depend on the context associated with the threat.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Atenção/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Estresse Psicológico/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Posição Ortostática , Adulto Jovem
11.
J Physiol ; 596(21): 5251-5265, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30176053

RESUMO

KEY POINTS: Threats to standing balance (postural threat) are known to facilitate soleus tendon-tap reflexes, yet the mechanisms driving reflex changes are unknown. Scaling of ramp-and-hold dorsiflexion stretch reflexes to stretch velocity and amplitude were examined as indirect measures of changes to muscle spindle dynamic and static function with height-induced postural threat. Overall, stretch reflexes were larger with threat. Furthermore, the slope (gain) of the stretch-velocity vs. short-latency reflex amplitude relationship was increased with threat. These findings are interpreted as indirect evidence for increased muscle spindle dynamic sensitivity, independent of changes in background muscle activity levels, with a threat to standing balance. We argue that context-dependent scaling of stretch reflexes forms part of a multisensory tuning process where acquisition and/or processing of balance-relevant sensory information is continuously primed to facilitate feedback control of standing balance in challenging balance scenarios. ABSTRACT: Postural threat increases soleus tendon-tap (t-) reflexes. However, it is not known whether t-reflex changes are a result of central modulation, altered muscle spindle dynamic sensitivity or combined spindle static and dynamic sensitization. Ramp-and-hold dorsiflexion stretches of varying velocities and amplitudes were used to examine velocity- and amplitude-dependent scaling of short- (SLR) and medium-latency (MLR) stretch reflexes as an indirect indicator of spindle sensitivity. t-reflexes were also performed to replicate previous work. In the present study, we examined the effects of postural threat on SLR, MLR and t-reflex amplitude, as well as SLR-stretch velocity scaling. Forty young-healthy adults stood with one foot on a servo-controlled tilting platform and the other on a stable surface. The platform was positioned on a hydraulic lift. Threat was manipulated by having participants stand in low (height 1.1 m; away from edge) then high (height 3.5 m; at the edge) threat conditions. Soleus stretch reflexes were recorded with surface electromyography and SLRs and MLRs were probed with fixed-amplitude variable-velocity stretches. t-reflexes were evoked with Achilles tendon taps using a linear motor. SLR, MLR and t-reflexes were 11%, 9.5% and 16.9% larger, respectively, in the high compared to low threat condition. In 22 out of 40 participants, SLR amplitude was correlated to stretch velocity at both threat levels. In these participants, the gain of the SLR-velocity relationship was increased by 36.1% with high postural threat. These findings provide new supportive evidence for increased muscle spindle dynamic sensitivity with postural threat and provide further support for the context-dependent modulation of human somatosensory pathways.


Assuntos
Equilíbrio Postural , Reflexo de Estiramento , Retroalimentação Fisiológica , Feminino , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Desempenho Psicomotor , Adulto Jovem
12.
J Neurophysiol ; 120(3): 1010-1016, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790833

RESUMO

Cortical excitability increases during the performance of more difficult postural tasks. However, it is possible that changes in postural threat associated with more difficult tasks may in themselves lead to alterations in the neural strategies underlying postural control. Therefore, the purpose of this study was to examine whether changes in postural threat are responsible for the alterations in corticospinal excitability and short-interval intracortical inhibition (SICI) that occur with increasing postural task difficulty. Fourteen adults completed three postural tasks (supported standing, free standing, or standing on an unstable board) at two surface heights (ground level or 3 m above ground). Single- and paired-pulse magnetic stimuli were applied to the motor cortex to compare soleus (SOL) and tibialis anterior (TA) test motor-evoked potentials (MEPs) and SICI between conditions. SOL and TA test MEPs increased from 0.35 ± 0.29 to 0.82 ± 0.41 mV (SOL) and from 0.64 ± 0.51 to 1.96 ± 1.45 mV (TA), respectively, whereas SICI decreased from 52.4 ± 17.2% to 39.6 ± 15.4% (SOL) and from 71.3 ± 17.7% to 50.3 ± 19.9% (TA) with increasing task difficulty. In contrast to the effects of task difficulty, only SOL test MEPs were smaller when participants stood at high (0.49 ± 0.29 mV) compared with low height (0.61 ± 0.40 mV). Because the presence of postural threat did not lead to any additional changes in the excitability of the motor corticospinal pathway and intracortical inhibition with increasing task difficulty, it seems unlikely that alterations in perceived threat are primarily responsible for the neurophysiological changes that are observed with increasing postural task difficulty. NEW & NOTEWORTHY We examined how task difficulty and postural threat influence the cortical control of posture. Results indicated that the motor corticospinal pathway and intracortical inhibition were modulated more by task difficulty than postural threat. Furthermore, because the presence of postural threat during the performance of various postural tasks did not lead to summative changes in motor-evoked potentials, alterations in perceived threat are not responsible for the neurophysiological changes that occur with increasing postural task difficulty.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Equilíbrio Postural/fisiologia , Posição Ortostática , Adulto , Análise de Variância , Ansiedade/psicologia , Eletromiografia/métodos , Medo/fisiologia , Medo/psicologia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Estatísticas não Paramétricas , Inquéritos e Questionários , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
13.
J Neuroeng Rehabil ; 15(1): 109, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458839

RESUMO

BACKGROUND: The trunk muscles are critical for postural control. Recent neurophysiological studies have revealed sparing of trunk muscle function in individuals with spinal cord injury (SCI) classified with thoracic or cervical motor-complete injuries. These findings raise the possibility for recruiting and retraining this spared trunk function through rehabilitation. Robotic gait training devices may provide a means to promote trunk muscle activation. Thus, the objective of this study was to characterize and compare the activation of the trunk muscles during walking with two robotic gait training devices (Ekso and Lokomat) in people with high thoracic motor-complete SCI. METHODS: Participants with chronic motor-complete paraplegia performed 3 speed-matched walking conditions: Lokomat-assisted walking, Ekso-assisted walking overground, and Ekso-assisted walking on a treadmill. Surface electromyography (EMG) signals were recorded bilaterally from the rectus abdominis (RA), external oblique (EO), and erector spinae (ES) muscles. RESULTS: Greater recruitment of trunk muscle EMG was elicited with Ekso-assisted walking compared to the Lokomat. Similar levels of trunk EMG activation were observed between Ekso overground and Ekso on the treadmill, indicating that differences between Ekso and Lokomat could not be attributed to the use of a hand-held gait aid. The level of trunk EMG activation during Lokomat walking was not different than that recorded during quiescent supine lying. CONCLUSIONS: Ekso-assisted walking elicits greater activation of trunk muscles compared to Lokomat-assisted walking, even after controlling for the use of hand-held assistive devices. The requirement of the Ekso for lateral weight-shifting in order to activate each step could lead to better postural muscle activation.


Assuntos
Terapia por Exercício/instrumentação , Exoesqueleto Energizado , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Tronco/fisiopatologia , Adulto , Feminino , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/fisiopatologia , Caminhada/fisiologia , Adulto Jovem
14.
J Physiol ; 595(13): 4493-4506, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326567

RESUMO

KEY POINTS: Golgi tendon organs (GTOs) and associated Ib reflexes contribute to standing balance, but the potential impacts of threats to standing balance on Ib reflexes are unknown. Tendon electrical stimulation to the Achilles' tendon was used to probe changes in Ib inhibition in medial gastrocnemius with postural orientation (lying prone vs. upright standing; experiment 1) and height-induced postural threat (standing at low and high surface heights; experiment 2). Ib inhibition was reduced while participants stood upright, compared to lying prone (42.2%); and further reduced when standing in the high, compared to low, threat condition (32.4%). These experiments will impact future research because they demonstrate that tendon electrical stimulation can be used to probe Ib reflexes in muscles engaged in standing balance. These results provide novel evidence that human short-latency GTO-Ib reflexes are dependent upon both task, as evidenced by changes with postural orientation, and context, such as height-induced postural threat during standing. ABSTRACT: Golgi tendon organ Ib reflexes are thought to contribute to standing balance control, but it is unknown if they are modulated when people are exposed to a postural threat. We used a novel application of tendon electrical stimulation (TStim) to elicit Ib inhibitory reflexes in the medial gastrocnemius, while actively engaged in upright standing balance, to examine (a) how Ib reflexes to TStim are influenced by upright stance, and (b) the effects of height-induced postural threat on Ib reflexes during standing. TStim evoked short-latency (<47 ms) inhibition apparent in trigger-averaged rectified EMG, which was quantified in terms of area, duration and mean amplitude of inhibition. In order to validate the use of TStim in a standing model, TStim-Ib inhibition was compared from conditions where participants were lying prone vs. standing upright. TStim evoked Ib inhibition in both conditions; however, significant reductions in Ib inhibition area (42.2%) and duration (32.9%) were observed during stance. Postural threat, manipulated by having participants stand at LOW (0.8 m high, 0.6 m from edge) and HIGH (3.2 m, at edge) elevated surfaces, significantly reduced Ib inhibition area (32.4%), duration (16.4%) and amplitude (24.8%) in the HIGH, compared to LOW, threat condition. These results demonstrate TStim is a viable technique for investigating Ib reflexes in standing, and confirm Ib reflexes are modulated with postural orientation. The novel observation of reduced Ib inhibition with elevated postural threat reveals that human Ib reflexes are context dependent, and the human Ib reflex pathways are modulated by threat or emotional processing centres of the CNS.


Assuntos
Tendão do Calcâneo/fisiologia , Reflexo H , Inibição Neural , Equilíbrio Postural , Postura , Tendão do Calcâneo/inervação , Estimulação Elétrica , Feminino , Humanos , Masculino , Mecanorreceptores/fisiologia , Adulto Jovem
15.
J Neurophysiol ; 117(2): 846-852, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927789

RESUMO

Small-amplitude, higher frequency oscillations of the body or limb are typically observed when humans attempt to maintain the position of a body or limb in space. Recent investigations have suggested that these involuntary movements of the body during stance could be used as an exploratory means of acquiring sensory information. In the present study, we wanted to determine whether a similar phenomenon would be observed in an upper limb postural task that does not involve whole body postural control. Participants were placed in a supine position with the arm pointing vertically and were asked to maintain the position of the limb in space with and without visual feedback. The wrist was attached to an apparatus that allowed the experimenter to stabilize or "lock" movements of the arm without the participants' awareness. When participants were "locked," the forces recorded predicted greater accelerations than those observed when the arm was freely moving with and without visual feedback. From unlocked to locked, angular accelerations increased in the eyes-closed condition and when participants were provided visual feedback of arm angular displacements. Irrespective of their origin, small displacements of the limb may be used as an exploratory means of acquiring sensory information from the surrounding environment.NEW & NOTEWORTHY The role of movement variability during a static limb position task is currently unknown. We tested whether variability remains in the absence of sensory-based error with an apparatus that stabilized the limb without the participant's knowledge during a static postural task. Increased forces observed during arm stabilization predicted movements greater than those observed when not externally stabilized. These results suggest movement variability during static postures could facilitate the gathering of sensory information from the surrounding environment.


Assuntos
Braço/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Aceleração , Adulto , Análise de Variância , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Dinâmica não Linear , Amplitude de Movimento Articular/fisiologia , Adulto Jovem
16.
J Neurophysiol ; 117(2): 604-611, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27832609

RESUMO

Standing balance is significantly influenced by postural threat. While this effect has been well established, the underlying mechanisms of the effect are less understood. The involvement of the vestibular system is under current debate, and recent studies that investigated the effects of height-induced postural threat on vestibular-evoked responses provide conflicting results based on kinetic (Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. J Physiol 592: 3671-3685, 2014) and kinematic (Osler CJ, Tersteeg MC, Reynolds RF, Loram ID. Eur J Neurosci 38: 3239-3247, 2013) data. We examined the effect of threat of perturbation, a different form of postural threat, on coupling (cross-correlation, coherence, and gain) of the vestibulo-muscular relationship in 25 participants who maintained standing balance. In the "No-Threat" conditions, participants stood quietly on a stable surface. In the "Threat" condition, participants' balance was threatened with unpredictable mediolateral support surface tilts. Quiet standing immediately before the surface tilts was compared to an equivalent time from the No-Threat conditions. Surface EMG was recorded from bilateral trunk, hip, and leg muscles. Hip and leg muscles exhibited significant increases in peak cross-correlation amplitudes, coherence, and gain (1.23-2.66×) in the Threat condition compared with No-Threat conditions, and significant correlations were observed between threat-related changes in physiological arousal and medium-latency peak cross-correlation amplitude in medial gastrocnemius (r = 0.408) muscles. These findings show a clear threat effect on vestibular-evoked responses in muscles in the lower body, with less robust effects of threat on trunk muscles. Combined with previous work, the present results can provide insight into observed changes during balance control in threatening situations. NEW & NOTEWORTHY: This is the first study to show increases in vestibular-evoked responses of the lower body muscles under conditions of increased threat of postural perturbation. While robust findings were observed in hip and leg muscles, less consistent results were found in muscles of the trunk. The present findings provide further support in the ongoing debate for arguments that vestibular-evoked balance responses are influenced by fear and anxiety and explain previous threat-related changes in balance.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
18.
Arch Phys Med Rehabil ; 98(8): 1586-1593, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279661

RESUMO

OBJECTIVE: To examine the effect of a targeted balance training program on dynamic balance and self-reported physical function in people with medial tibiofemoral osteoarthritis (OA). DESIGN: Single-blind randomized controlled trial. SETTING: Exercise gymnasium and community dwellings. PARTICIPANTS: Individuals with medial compartment knee OA (N=40). INTERVENTIONS: Ten weeks of partially supervised exercises targeting dynamic balance and strength performed 4 times per week or no intervention (nonintervention group). MAIN OUTCOME MEASURES: Dynamic balance was measured using the Community Balance and Mobility Scale (CB&M), and self-reported physical function was measured using the Western Ontario and McMaster Universities Arthritis Index physical function subscale. Secondary outcomes included knee pain, fear of movement, knee joint proprioception, and muscle strength. RESULTS: Forty individuals underwent baseline testing, with 36 participants completing follow-up testing. Adherence to exercise in the training group was high, with 82.2% of all home-based exercise sessions completed. No significant changes were observed in any outcome in the nonintervention group at follow-up. Significant improvements in self-reported pain, physical function, and fear of movement were observed in the training group when compared with the nonintervention group. No other within- or between-group differences were observed. CONCLUSIONS: A 10-week dynamic balance training program for people with knee OA significantly improved self-reported knee pain, physical function, and fear of movement; however, there was no change in dynamic balance as quantified by the CB&M. Further research is needed to investigate how exercise may result in improvement on objective measures of dynamic balance.


Assuntos
Terapia por Exercício/métodos , Articulação do Joelho/fisiopatologia , Força Muscular/fisiologia , Osteoartrite do Joelho/reabilitação , Equilíbrio Postural/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ontário , Dor/reabilitação , Projetos Piloto , Propriocepção/fisiologia , Método Simples-Cego
19.
J Neurophysiol ; 116(4): 1848-1858, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27489366

RESUMO

Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults.


Assuntos
Envelhecimento/fisiologia , Extremidade Inferior/fisiologia , Equilíbrio Postural/fisiologia , Reflexo/fisiologia , Fenômenos Fisiológicos da Pele , Tato/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Estimulação Física , Limiar Sensorial/fisiologia , Vibração , Adulto Jovem
20.
Exp Brain Res ; 233(6): 1931-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25850406

RESUMO

Movement preparation of bimanual asymmetric movements is longer than bimanual symmetric movements in choice reaction time conditions, even when movements are cued directly by illuminating the targets (Blinch et al. in Exp Brain Res 232(3):947-955, 2014). This bimanual asymmetric cost may be caused by increased processing demands on response programming, but this requires further investigation. The present experiment tested the demands on response programming for bimanual movements by temporally separating the preparation of each arm. This was achieved by precuing the target of one arm before the imperative stimulus. We asked: What was prepared in advance when one arm was precued? The answer to this question would suggest which process causes the bimanual asymmetric cost. Advance movement preparation was examined by comparing reaction times with and without a precue for the left target and by occasionally replacing the imperative stimulus with a loud, startling tone (120 dB). A startle tone releases whatever movement is prepared in advance with a much shorter reaction time than control trials (Carlsen et al. in Clin Neurophysiol 123(1):21-33, 2012). Participants made bimanual symmetric and asymmetric reaching movements in simple and 2-choice reaction time conditions and a condition with a precue for the left target. We found a bimanual asymmetric cost in 2-choice conditions, and the asymmetric cost was significantly smaller when the left target was precued. These results, and the results from startle trials, suggest (1) that the precued movement was not fully programmed but partially programmed before the imperative stimulus and (2) that the asymmetric cost was caused by increased processing demands on response programming. Overall, the results support the notion that bimanual movements are not the sum of two unimanual movements; instead, the two arms of a bimanual movement are unified into a functional unit. When one target is precued, this critical unification likely occurs during response programming.


Assuntos
Braço/fisiologia , Comportamento de Escolha/fisiologia , Lateralidade Funcional/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Acústica , Adulto , Sinais (Psicologia) , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação , Reflexo de Sobressalto/fisiologia , Percepção Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA