Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Liver Int ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780109

RESUMO

BACKGROUND & AIMS: Total serum bile acid (TSBA) levels are elevated in patients with primary biliary cholangitis (PBC) and may mediate cholestatic pruritus. Linerixibat, an ileal bile acid transporter inhibitor, improved pruritus in patients with PBC. We explored the relationship between linerixibat dose, TSBA concentration, and pruritus. METHODS: Data from Phase 1/2 trials were used to develop a population kinetic-pharmacodynamic model to characterize the linerixibat dose-TSBA relationship. Individual Bayesian parameter estimates for participants in the GLIMMER study were used to derive the area under the TSBA concentration curve over 24 h (AUC0-24). Time-matched post hoc estimates of AUC0-24 were correlated with pruritus reported on a 0-10 numerical rating scale. Baseline TSBA concentration was correlated with change from baseline (ΔBL) in monthly itch score (MIS). ΔBL in model-estimated TSBA AUC0-24 was correlated with time-matched ΔBL in weekly itch score (WIS) or MIS. RESULTS: Linerixibat dose dependently reduced TSBA AUC0-24, reaching steady state after 5 days. Baseline TSBA levels in GLIMMER did not correlate with ΔBL in MIS. ΔBL in TSBA AUC0-24 correlated with improved WIS over 12 weeks of treatment (r = 0.52, p < 0.0001). Of participants with a ≥30% decrease in TSBA AUC0-24, 60% were pruritus responders (≥2-point improvement in WIS from baseline). CONCLUSIONS: Linerixibat treatment leads to rapid, dose-dependent TSBA reductions. Baseline TSBA levels do not correlate with on-treatment pruritus change, suggesting they do not predict linerixibat response. Change in TSBA AUC0-24 correlates significantly with, and can be predictive of, pruritus improvement in patients with PBC.

2.
Drug Metab Dispos ; 49(9): 844-855, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34154994

RESUMO

Solithromycin is a novel fluoroketolide antibiotic that is both a substrate and time-dependent inhibitor of CYP3A. Solithromycin has demonstrated efficacy in adults with community-acquired bacterial pneumonia and has also been investigated in pediatric patients. The objective of this study was to develop a framework for leveraging physiologically based pharmacokinetic (PBPK) modeling to predict CYP3A-mediated drug-drug interaction (DDI) potential in the pediatric population using solithromycin as a case study. To account for age, we performed in vitro metabolism and time-dependent inhibition studies for solithromycin for CYP3A4, CYP3A5, and CYP3A7. The PBPK model included CYP3A4 and CYP3A5 metabolism and time-dependent inhibition, glomerular filtration, P-glycoprotein transport, and enterohepatic recirculation. The average fold error of simulated and observed plasma concentrations of solithromycin in both adults (1966 plasma samples) and pediatric patients from 4 days to 17.9 years (684 plasma samples) were within 0.5- to 2.0-fold. The geometric mean ratios for the simulated area under the concentration versus time curve (AUC) extrapolated to infinity were within 0.75- to 1.25-fold of observed values in healthy adults receiving solithromycin with midazolam or ketoconazole. DDI potential was simulated in pediatric patients (1 month to 17 years of age) and adults. Solithromycin increased the simulated midazolam AUC 4- to 6-fold, and ketoconazole increased the simulated solithromycin AUC 1- to 2-fold in virtual subjects ranging from 1 month to 65 years of age. This study presents a systematic approach for incorporating CYP3A in vitro data into adult and pediatric PBPK models to predict pediatric CYP3A-mediated DDI potential. SIGNIFICANCE STATEMENT: Using solithromycin, this study presents a framework for investigating and incorporating CYP3A4, CYP3A5, and CYP3A7 in vitro data into adult and pediatric physiologically based pharmacokinetic models to predict CYP3A-mediated DDI potential in adult and pediatric subjects during drug development. In this study, minor age-related differences in inhibitor concentration resulted in differences in the magnitude of the DDI. Therefore, age-related differences in DDI potential for substrates metabolized primarily by CYP3A4 can be minimized by closely matching adult and pediatric inhibitor concentrations.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Macrolídeos/administração & dosagem , Macrolídeos/farmacocinética , Triazóis/administração & dosagem , Triazóis/farmacocinética , Adolescente , Adulto , Ansiolíticos/farmacocinética , Antifúngicos/farmacocinética , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Humanos , Lactente , Cetoconazol/farmacocinética , Midazolam/farmacocinética , Espectrometria de Massas em Tandem
3.
J Pharmacol Exp Ther ; 375(1): 49-58, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719070

RESUMO

This study investigated plasma and brain disposition of quetiapine lipid core nanocapsules (QLNC) in naive and schizophrenic (SCZ-like) rats and developed a semimechanistic model to describe changes in both compartments following administration of the drug in solution (FQ) or nanoencapsulated. QLNC (1 mg/ml) presented 166 ± 39 nm, low polydispersity, and high encapsulation (93.0% ± 1.4%). A model was built using experimental data from total and unbound plasma and unbound brain concentrations obtained by microdialysis after administration of single intravenous bolus dose of FQ or QLNC to naive and SCZ-like rats. A two-compartment model was identifiable both in blood and in brain with a bidirectional drug transport across the blood-brain barrier (CLin and CLout). SCZ-like rats' significant decrease in brain exposure with FQ (decrease in CLin) was reverted by QLNC, showing that nanocarriers govern quetiapine tissue distribution. Model simulations allowed exploring the potential of LNC for brain delivery. SIGNIFICANCE STATEMENT: A population approach was used to simultaneously model total and unbound plasma and unbound brain quetiapine concentrations allowing for quantification of the rate and extent of the drug's brain distribution following administration of both free drug in solution or as nanoformulation to naive and SCZ-like rats. The model-based approach is useful to better understand the possibilities and limitations of this nanoformulation for drug delivering to the brain, opening the opportunity to use this approach to improve SCZ-treatment-limited response rates.


Assuntos
Antipsicóticos/farmacocinética , Encéfalo/efeitos dos fármacos , Portadores de Fármacos/farmacocinética , Modelos Biológicos , Nanocápsulas/administração & dosagem , Fumarato de Quetiapina/farmacocinética , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/sangue , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Masculino , Microdiálise , Fumarato de Quetiapina/administração & dosagem , Fumarato de Quetiapina/sangue , Fumarato de Quetiapina/farmacologia , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/sangue , Esquizofrenia/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2495-2509, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29653185

RESUMO

The present study was planned to improve our understanding about sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Female (FCaf) and male (MCaf) mice fed a cafeteria diet had similar body weight gain and adiposity index, but FCaf had a more extensive steatosis than MCaf. FCaf livers exhibited a higher non-alcoholic fatty liver disease activity score, elevated lipid percentage area (+34%) in Sudan III staining and increased TG content (+25%) compared to MCaf. Steatosis in FCaf was not correlated with changes in the transcript levels of lipid metabolism-related genes, but a reduced VLDL release rate was observed. Signs of oxidative stress were found in FCaf livers, as elevated malondialdehyde content (+110%), reduced catalase activity (-36%) and increased Nrf2 and Hif1a mRNA expression compared to MCaf. Interestingly, fibroblast growth factor 21 (Fgf21) mRNA expression was found to be exclusively induced in MCaf, which also exhibited higher FGF21 serum levels (+416%) and hepatic protein abundance (+163%) than FCaf. Moreover, cafeteria diet increased Fgfr1, Fsp27 and Ucp1 mRNA expression in brown adipose tissue of males (MCaf), but not females (FCaf). FGF21 hepatic production by male mice seems to be part of a complex network of responses to the nutritional stress of the cafeteria diet, probably related to the unfolded protein response activation. Although aimed at the restoration of hepatic metabolic homeostasis, the branch involving Fgf21 upregulation seems to be impaired in females, rendering them incapable of reducing the hepatic lipid content and cellular oxidative stress.


Assuntos
Dieta/efeitos adversos , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Animais , Feminino , Fatores de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/patologia , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/patologia
5.
Pharm Res ; 35(7): 132, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29704215

RESUMO

PURPOSE: The present work aimed to evaluate the influence of experimental meningitis caused by C. neoformans on total plasma and free brain concentrations of fluconazole (FLC) in Wistar rats. METHOD: The infection was induced by the administration of 100 µL of inoculum (1.105 CFU) through the tail vein. Free drug in the brain was assessed by microdialisys (µD). Blood and µD samples were collected at pre-determined time points up to 12 h after intravenous administration of FLC (20 mg/kg) to healthy and infected rats. The concentration-time profiles were analyzed by non-compartmental and population pharmacokinetics approaches. RESULTS: A two-compartmental popPK model was able to simultaneously describe plasma and free drug concentrations in the brain for both groups investigated. Analysis of plasma and µD samples showed a better FLC distribution on the brain of infected than healthy animals (1.04 ± 0.31 vs 0.69 ± 0.14, respectively). The probability of target attainment was calculated by Monte Carlo simulations based on the developed popPK model for 125 mg/kg dose for rats and 400-2000 mg for humans. CONCLUSIONS: FLC showed a limited use in monotherapy to the treatment of criptoccocosis in rats and humans to value of MIC >8 µg/mL.


Assuntos
Antifúngicos/metabolismo , Encéfalo/metabolismo , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Fluconazol/metabolismo , Modelos Biológicos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana/métodos , Método de Monte Carlo , Ratos , Ratos Wistar
6.
Mol Pharm ; 13(4): 1289-97, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26905300

RESUMO

Lipid-core nanocapsules (LCNs) have been proposed as drug carriers to improve brain delivery by modulating drug pharmacokinetics (PK). However, it is not clear whether the LCNs carry the drug through the blood-brain barrier or increase free drug penetration due to changes in the barrier permeability. Quetiapine (QTP) penetration to the brain is mediated by influx transporters and therefore might be reduced by drug transporters inhibitiors as probenecid. The goal of this work was to investigate the role of type-III LCNs on brain penetration of QTP using microdialysis in the presence probenecid. QTP-loaded LCN (QLNC) was successfully obtained with a small particle size (143 ± 6 nm), low polydispersity index (PI < 0.1), and high encapsulation efficiency (95.4 ± 1.82%.). Total and free drug concentration in plasma and free drug concentration in brain were analyzed following i.v. bolus dosing of nonencapsulated drug (FQ) and QLNC formulations alone and in association with probenecid to male Wistar rats. QTP free plasma fraction right after administration of QLNC was smaller than the fraction observed after FQ dosing; however, it increased over time until similar free drug levels were attained, suggesting that type-III LNCs produce a short in vivo sustained release of the drug. The inhibition of influx transporters by PB led to a reduction of free QTP brain penetration, as observed by the reduction of penetration factor from 1.55 ± 0.17 to a value closer to unit (0.94 ± 0.15). However, when the drug was nanoencapsulated, the inhibition of influx transporters had no effect on the brain penetration factor (0.88 ± 0.21 to 0.92 ± 0.13) probably because QTP is loaded into LNC and not available to interact with transporters. Taken together, these results suggest that LNC type-III carried QTP in the bloodstream and delivered the drug to the brain.


Assuntos
Barreira Hematoencefálica/metabolismo , Nanocápsulas/química , Fumarato de Quetiapina/farmacocinética , Animais , Masculino , Microdiálise , Ratos , Ratos Wistar
7.
Planta Med ; 82(11-12): 1030-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27257769

RESUMO

Herbal preparations from Voacanga africana are used in West and Central African folk medicine and are also becoming increasingly popular as a legal high in Europe. Recently, the main alkaloid voacangine was found to be a potent human ether-à-go-go-related gene channel blocker in vitro. Blockage of this channel might imply possible cardiotoxicity. Therefore, the aim of this study was to characterise voacangine in vivo to assess its pharmacokinetics and to estimate if further studies to investigate its cardiotoxic risk are required. Male Wistar rats received different doses of voacangine as a pure compound and as a hydro-ethanolic extract of V. africana root bark with a quantified amount of 9.71 % voacangine. For the obtained data, a simultaneous population pharmacokinetics model was successfully developed, comprising a two-compartment model for i. v. dosing and a one-compartmental model with two first-order absorption rates for oral dosing. The absolute bioavailability of voacangine was determined to be 11-13 %. Model analysis showed significant differences in the first absorption rate constant for voacangine administered as a pure compound and voacangine from the extract of V. africana. Taking into account the obtained low bioavailability of voacangine, its cardiotoxic risk might be neglectable in healthy consumers, but may have a serious impact in light of drug/drug interactions and impaired health conditions.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Ibogaína/análogos & derivados , Voacanga/química , Animais , Humanos , Ibogaína/química , Ibogaína/farmacocinética , Ibogaína/farmacologia , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem/métodos
8.
Clin Pharmacol Ther ; 115(2): 288-298, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953500

RESUMO

Increase in serum bile acids (BAs) in patients with primary biliary cholangitis (PBC) may play a causal role in cholestatic pruritus (itch). Linerixibat is a selective small molecule inhibitor of the ileal bile acid transporter, which blocks re-absorption of BAs in the gastrointestinal tract thereby lowering BAs in the systemic circulation and reducing itch. One consequence is excess BAs in the colon, leading to diarrhea and abdominal pain. GLIMMER (NCT02966834) was a placebo-controlled phase IIb dose-ranging trial of linerixibat once (q.d.) or twice daily (b.i.d.) in adults with moderate to severe pruritus and PBC. To determine the optimal dose for maximum itch reduction while minimizing diarrhea, a kinetic-pharmacodynamic (k-PD) model was developed using data from GLIMMER. The PD end point modeled was worst daily itch, derived from itch score reported by patients b.i.d. A proportional odds model was developed post hoc to indicate the probability of diarrhea occurrence, a patient-reported outcome (GI-5) recorded weekly. The final k-PD model successfully described the effects of linerixibat and placebo on itch. Model simulations were consistent with the observed dose-dependent increase in the average number of itch responders (patients with a ≥ 2-point improvement in itch). This was paralleled by a dose-dependent increase in the probability of higher diarrhea frequency scores. The b.i.d. dosing regimens led to a modest increase in the number of itch responders as compared with q.d. dosing. This quantitative framework highlights the trade-off between benefit and tolerability and supported the selection of 40 mg b.i.d. in the phase III GLISTEN trial (NCT04950127).


Assuntos
Trato Gastrointestinal , Prurido , Adulto , Humanos , Protocolos Clínicos , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Medidas de Resultados Relatados pelo Paciente , Prurido/tratamento farmacológico
9.
Clin Pharmacokinet ; 63(7): 999-1014, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38955947

RESUMO

BACKGROUND AND OBJECTIVE: Pediatric dosing of enoxaparin was derived based on extrapolation of the adult therapeutic range to children. However, a large fraction of children do not achieve therapeutic anticoagulation with initial dosing. We aim to use real-world anti-Xa data obtained from children receiving enoxaparin per standard of care to characterize the population pharmacokinetics (PopPK).Author names: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Also, kindly confirm the details in the metadata are correct.The author names are accurately presented and the metadata are correct.  METHODS: A PopPK analysis was performed using NONMEM, and a stepwise covariate modeling approach was applied for the covariate selection. The final PopPK model, developed with data from 1293 patients ranging in age from 1 day to 18 years, was used to simulate enoxaparin subcutaneous dosing for prophylaxis and treatment based on total body weight (0-18 years, TBW) or fat-free mass (2-18 years, FFM). Simulated exposures in children with obesity (body mass index percentile ≥95th percentile) were compared with those without obesity. RESULTS: A linear, one-compartment PopPK model that included allometric scaling using TBW (<2 years) or FFM (≥2 years) characterized the enoxaparin pharmacokinetic data. In addition, serum creatinine was identified as a significant covariate influencing clearance. Simulations indicated that in patients aged <2 years, the recommended 1.5 mg/kg TBW-based dosing achieves therapeutic simulated concentrations. In pediatric patients aged ≥2 years, the recommended 1.0 mg/kg dose resulted in exposures more comparable in children with and without obesity when FFM weight-based dosing was applied. CONCLUSION: Using real-world data and PopPK modeling, enoxaparin's pharmacokinetics were characterized in pediatric patients. Using FFM and twice-daily dosing might reduce the risk of overdosing, especially in children with obesity.


Assuntos
Anticoagulantes , Enoxaparina , Modelos Biológicos , Humanos , Enoxaparina/farmacocinética , Enoxaparina/administração & dosagem , Criança , Pré-Escolar , Adolescente , Lactente , Feminino , Masculino , Anticoagulantes/farmacocinética , Anticoagulantes/administração & dosagem , Recém-Nascido , Peso Corporal , Relação Dose-Resposta a Droga , Medicina de Precisão/métodos
10.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 638-648, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38282365

RESUMO

Schizophrenia (SCZ) response to pharmacological treatment is highly variable. Quetiapine (QTP) administered as QTP lipid core nanocapsules (QLNC) has been shown to modulate drug delivery to the brain of SCZ phenotyped rats (SPR). In the present study, we describe the brain concentration-effect relationship after administrations of QTP as a solution or QLNC to SPR and naïve animals. A semimechanistic pharmacokinetic (PK) model describing free QTP concentrations in the brain was linked to a pharmacodynamic (PD) model to correlate the drug kinetics to changes in dopamine (DA) medial prefrontal cortex extracellular concentrations determined by intracerebral microdialysis. Different structural models were investigated to fit DA concentrations after QTP dosing, and the final model describes the synthesis, release, and elimination of DA using a pool compartment. The results show that nanoparticles increase QTP brain concentrations and DA peak after drug dosing to SPR. To the best of our knowledge, this is the first study that combines microdialysis and PK/PD modeling in a neurodevelopmental model of SCZ to investigate how a nanocarrier can modulate drug PK and PD, contributing to the development of new treatment strategies for SCZ.


Assuntos
Nanocápsulas , Esquizofrenia , Ratos , Animais , Fumarato de Quetiapina/farmacocinética , Dopamina , Nanocápsulas/química , Esquizofrenia/tratamento farmacológico , Lipídeos
11.
Mol Cell Biochem ; 373(1-2): 265-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23117227

RESUMO

Most studies using a hypercaloric diet to induce obesity have focused on the metabolism of fat and carbohydrates. Less concern has been given to the metabolism of amino acids, despite evidence of modifications in nitrogen metabolism during obesity. The aim of this study was to evaluate amino acid metabolism in livers from cafeteria diet-induced obese rats. Blood parameters were analysed, and histological sections of livers were stained with Sudan III. The enzymatic activities of some enzymes were determined in liver homogenates. Gluconeogenesis, ureagenesis, and oxygen consumption were evaluated in rat livers perfused with glutamine, alanine, or ammonium chloride. Compared to control rats, cafeteria-fed rats demonstrated higher levels of triacylglycerol and glucose in the blood and greater accumulation of fat in livers. Gluconeogenesis and urea production in livers perfused with glutamine and alanine at higher concentrations showed a substantial reduction in cafeteria-fed rats. However, no significant difference was observed among groups perfused with ammonium chloride. The activities of the enzymes alanine aminotransferase, glutaminase, and aspartate aminotransferase in the livers were reduced in cafeteria-fed rats. Taken together, these data are consistent with the hypothesis that livers from cafeteria diet-induced obese rats exhibit a limitation in their maximal capacity to metabolise glutamine and alanine to glucose, ammonia, and urea, not because of an impairment in gluconeogenesis and/or ureagenesis, but rather due to a depression in the activities of enzymes that catalyse the initial steps of amino acid metabolism.


Assuntos
Aminoácidos/metabolismo , Fígado/metabolismo , Obesidade Abdominal/metabolismo , Amônia/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Glicemia , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Glutamato Desidrogenase/metabolismo , Técnicas In Vitro , Ácido Láctico/sangue , Metabolismo dos Lipídeos , Masculino , Obesidade Abdominal/etiologia , Consumo de Oxigênio , Ratos , Ratos Wistar , Triglicerídeos/sangue , Ureia/metabolismo
12.
Materials (Basel) ; 16(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37763529

RESUMO

The mechanical properties of 2024 aluminum alloy were studied after two different tempers. The T351 temper (solution heat treatment, stress relief, and natural aging) leads to high hardness and toughness. A thermal treatment consisting of heat-treating at 280 °C for 48 h and slow cooling in a furnace, named TT temper, was performed to increase the precipitate size and their separation while minimizing the amount of solutes in solid solution, which produced the minimum hardness for an overaged Al2024 alloy and a lower tensile flow stress than for the T351 temper. The flow stress strongly decreases and the elongation to failure strongly increases for both materials above 300 °C. Differences in strain rate at a given stress in the power law regime at all temperatures for both tempers and compared with pure aluminum are attributed to the influence of solutes in solid solutions, affecting both the glide and climb of dislocations. However, the stacking fault energy, SFE, alone does not account for the hot deformation behavior. Thus, it is the synergistic effect of various solutes that affects the entire deformation process, causing a decrease of three or four orders of magnitude in strain rate for a given stress with respect to the pure aluminum matrix values.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36332881

RESUMO

DNA double-strand breaks (DSBs) are repaired through three major pathways: Non-Homologous End-Joining (NHEJ), Microhomology-Mediated End-Joining (MMEJ), and Homology-Directed Repair (HDR), each requiring a specific set of diverse proteins. Such pathways and their proteins have been studied in model organisms, including arthropods; however, DSB repair pathways are scarcely described in Crustacea, a taxon that includes the commercially valuable penaeid shrimps (Crustacea: Decapoda: Penaeidae). In this work, transcriptome and proteome databases of Penaeus vannamei and other Crustacea species were scrutinized for each protein of the NHEJ pathway. The structural and functional attributes of such proteins in penaeids were determined using bioinformatics. Additionally, the expression of the NHEJ-related Ku70, Ku80, DNA-PKcs, DNA ligase 4 (Lig4), and HDR- and MMEJ-related protein transcripts were assessed in P. vannamei gills, midgut gland, hemocytes, and muscle by RT-PCR. DSB repair protein transcripts were found expressed in the four assayed tissues, particularly in the gills and midgut gland. Among DSB repair proteins, all the analyzed transcripts of proteins related to the NHEJ pathway were present in gills. To the best of our knowledge, this is the first report on the expression of DSB repair proteins in Decapoda. Together, proteomic, transcriptomic, and expression data suggest the functionality of NHEJ, HDR, and MMEJ pathways in P. vannamei and other decapods. The information presented here contributes to understanding the response to DSB breaks in shrimps, describing possible outcomes in oxidative stress studies and also in the designing of gene editing strategies, which have not been developed in Penaeidae.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteômica , Animais , Reparo do DNA , DNA/genética , DNA/metabolismo , Crustáceos
14.
Clin Pharmacol Ther ; 112(2): 391-403, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451072

RESUMO

Dosing guidance for children with obesity is often unknown despite the fact that nearly 20% of US children are classified as obese. Enoxaparin, a commonly prescribed low-molecular-weight heparin, is dosed based on body weight irrespective of obesity status to achieve maximum concentration within a narrow therapeutic or prophylactic target range. However, whether children with and without obesity experience equivalent enoxaparin exposure remains unclear. To address this clinical question, 2,825 anti-activated factor X (anti-Xa) surrogate concentrations were collected from the electronic health records of 596 children, including those with obesity. Using linear mixed-effects regression models, we observed that 4-hour anti-Xa concentrations were statistically significantly different in children with and without obesity, even for children with the same absolute dose (P = 0.004). To further mechanistically explore obesity-associated differences in anti-Xa concentration, a pediatric physiologically-based pharmacokinetic (PBPK) model was developed in adults, and then scaled to children with and without obesity. This PBPK model incorporated binding of enoxaparin to antithrombin to form anti-Xa and elimination via heparinase-mediated metabolism and glomerular filtration. Following scaling, the PBPK model predicted real-world pediatric concentrations well, with an average fold error (standard deviation of the fold error) of 0.82 (0.23) and 0.87 (0.26) in children with and without obesity, respectively. PBPK model simulations revealed that children with obesity have at most 20% higher 4-hour anti-Xa concentrations under recommended, total body weight-based dosing compared to children without obesity owing to reduced weight-normalized clearance. Enoxaparin exposure was better matched across age groups and obesity status using fat-free mass weight-based dosing.


Assuntos
Enoxaparina , Tromboembolia Venosa , Adulto , Anticoagulantes , Criança , Enoxaparina/uso terapêutico , Heparina de Baixo Peso Molecular , Humanos , Obesidade , Tromboembolia Venosa/tratamento farmacológico
15.
CPT Pharmacometrics Syst Pharmacol ; 11(6): 778-791, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35491971

RESUMO

Obesity is an increasingly alarming public health threat, with nearly 20% of children classified as obese in the United States today. Children with obesity are commonly prescribed the opioids fentanyl and methadone, and accurate dosing is critical to reducing the risk of serious adverse events associated with overexposure. However, pharmacokinetic studies in children with obesity are challenging to conduct, so there is limited information to guide fentanyl and methadone dosing in these children. To address this clinical knowledge gap, physiologically-based pharmacokinetic models of fentanyl and methadone were developed in adults and scaled to children with and without obesity to explore the interplay of obesity, age, and pharmacogenomics. These models included key obesity-induced changes in physiology and pharmacogenomic effects. Model predictions captured observed concentrations in children with obesity well, with an overall average fold error of 0.72 and 1.08 for fentanyl and methadone, respectively. Model simulations support a reduced fentanyl dose (1 vs. 2 µg/kg/h) starting at an earlier age (6 years) in virtual children with obesity, highlighting the importance of considering both age and obesity status when selecting an infusion rate most likely to achieve steady-state concentrations within the target range. Methadone dosing simulations highlight the importance of considering genotype in addition to obesity status when possible, as cytochrome P450 (CYP)2B6*6/*6 virtual children with obesity required half the dose to match the exposure of wildtype children without obesity. This physiologically-based pharmacokinetic modeling approach can be applied to explore dosing of other critical drugs in children with obesity.


Assuntos
Analgésicos Opioides , Fentanila , Adulto , Analgésicos Opioides/farmacocinética , Criança , Humanos , Metadona/efeitos adversos , Metadona/farmacocinética , Obesidade/tratamento farmacológico
16.
Pharmaceutics ; 14(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745809

RESUMO

Biofilms and infectious process may alter free antimicrobial concentrations at the site of infection. Tobramycin (TOB), an aminoglycoside used to treat lung infections caused by Pseudomonas aeruginosa, binds to alginate present in biofilm extracellular matrix increasing its minimum inhibitory concentration (MIC). This work aimed to investigate the impact of biofilm-forming P. aeruginosa infection on TOB lung and epithelial lining fluid (ELF) penetration, using microdialysis, and to develop a population pharmacokinetic (popPK) model to evaluate the probability of therapeutic target attainment of current dosing regimens employed in fibrocystic and non-fibrocystic patients. The popPK model developed has three compartments including the lung. The ELF concentrations were described by a penetration factor derived from the lung compartment. Infection was a covariate in lung volume (V3) and only chronic infection was a covariate in central volume (V1) and total clearance (CL). Simulations of the recommended treatments for acute and chronic infection achieved >90% probability of target attainment (PTA) in the lung with 4.5 mg/kg q24h and 11 mg/kg q24h, respectively, for the most prevalent P. aeruginosa MIC (0.5 mg/mL). The popPK model was successfully applied to evaluate the PTA of current TOB dosing regimens used in the clinic, indicating the need to investigate alternative posology.

17.
Clin Pharmacokinet ; 61(2): 307-320, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617262

RESUMO

BACKGROUND AND OBJECTIVE: While one in five children in the USA are now obese, and more than three-quarters receive at least one drug during childhood, there is limited dosing guidance for this vulnerable patient population. Physiologically based pharmacokinetic modeling can bridge the gap in the understanding of how pharmacokinetics, including drug distribution and clearance, changes with obesity by incorporating known obesity-related physiological changes in children. The objective of this study was to develop a virtual population of children with obesity to enable physiologically based pharmacokinetic modeling, then use the novel virtual population in conjunction with previously developed models of clindamycin and trimethoprim/sulfamethoxazole to better understand dosing of these drugs in children with obesity. METHODS: To enable physiologically based pharmacokinetic modeling, a virtual population of children with obesity was developed using national survey, electronic health record, and clinical trial data, as well as data extracted from the literature. The virtual population accounts for key obesity-related changes in physiology relevant to pharmacokinetics, including increased body size, body composition, organ size and blood flow, plasma protein concentrations, and glomerular filtration rate. The virtual population was then used to predict the pharmacokinetics of clindamycin and trimethoprim/sulfamethoxazole in children with obesity using previously developed physiologically based pharmacokinetic models. RESULTS: Model simulations predicted observed concentrations well, with an overall average fold error of 1.09, 1.24, and 1.53 for clindamycin, trimethoprim, and sulfamethoxazole, respectively. Relative to children without obesity, children with obesity experienced decreased clindamycin and trimethoprim/sulfamethoxazole weight-normalized clearance and volume of distribution, and higher absolute doses under recommended pediatric weight-based dosing regimens. CONCLUSIONS: Model simulations support current recommended weight-based dosing in children with obesity for clindamycin and trimethoprim/sulfamethoxazole, as they met target exposure despite these changes in clearance and volume of distribution.


Assuntos
Clindamicina , Obesidade , Composição Corporal , Criança , Taxa de Filtração Glomerular , Humanos , Modelos Biológicos , Obesidade/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/farmacocinética
18.
J Bioenerg Biomembr ; 43(2): 119-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21384180

RESUMO

In the mitochondrial F(O)F(1) ATP-synthase/ATPase complex, subunits α and ß are part of the extrinsic portion that catalyses ATP synthesis. Since there are no reports about genes and proteins from these subunits in crustaceans, we analyzed the cDNA sequences of both subunits in the whiteleg shrimp Litopenaeus vannamei and their phylogenetic relationships. We also investigated the effect of hypoxia on shrimp by measuring changes in the mRNA amounts of atpα and atpß. Our results confirmed highly conserved regions for both subunits and underlined unique features among others. The ATPß deduced protein of shrimp was less conserved in size and sequence than ATPα. The relative mRNA amounts of atpα and atpß changed in shrimp pleopods; hypoxia at 1.5 mg/L caused an increase in atpß transcripts and a subsequent decrease when shrimp were re-oxygenated. Results confirm that changes in the mRNAs of the ATP-synthase subunits are part of the mechanisms allowing shrimp to deal with the metabolic adjustment displayed to tolerate hypoxia.


Assuntos
Trifosfato de Adenosina/metabolismo , Domínio Catalítico/fisiologia , Hipóxia/enzimologia , Penaeidae/enzimologia , ATPases Translocadoras de Prótons/biossíntese , Trifosfato de Adenosina/genética , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Hipóxia/genética , Penaeidae/genética , ATPases Translocadoras de Prótons/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Sequência de Proteína
19.
Epilepsia Open ; 6(1): 235-238, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681667

RESUMO

Objective: To report our initial experience using an adult-template MAP in drug-resistant focal epilepsy in five children with apparently normal MRI. Methods: Patients selected were highly suspicious of harboring focal structural lesions and had negative brain MRI studies. MAP was performed using a locally obtained adult database as a template. Results were reviewed by two neuroradiologists. Pertinence of MAP-positive areas was confirmed by the focal epileptic hypothesis or by pathology when possible (J Neuroradiol, 39, 2012, 87). Visual analysis was performed using Mango Software. MRI studies were reanalyzed at the workstation with knowledge of the clinical suspicion to confirm or discard the possibility of FCD. Results: Five patients aged 19-48 months were studied, all with initial 3T MRI studies interpreted as normal. All had focal epileptic hypothesis with coherence of clinical seizure characterization and electroencephalographic findings. In two patients, histology showed type 1 FCD. Due to the age of our subjects, the junction map always highlighted the subcortical white matter in relationship to maturity differences. FCD was identified as asymmetric U-shaped highlighted regions in the junction map. Significance: FCD is the most frequent pathology reported in pediatric epilepsy surgery series (Epileptic Disord, 18, 2016, 240). Significant number of FCDs may be overlooked on MRIs, reducing the odds of seizure freedom after surgery (Epilepsy Res, 89, 2010, 310). MAP is an image postprocessing method for enhanced visualization of FCD; however, when using an adult template in developing brains, normal subcortical regions may be highlighted as pathological. Creating a pediatric template is difficult, due to the need for general anesthesia to acquire the MRI database. Here, we were able to show that MAP identified FCDs as asymmetric "U-" shaped highlighted regions in the junction maps of all five patients, which may indicate that obtaining childhood databases for this purpose may not be necessary and that adult ones suffice for diagnosis of FCD.


Assuntos
Bases de Dados Factuais , Epilepsia Resistente a Medicamentos/patologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Pré-Escolar , Epilepsia Resistente a Medicamentos/diagnóstico , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Convulsões/patologia , Substância Branca/patologia , Adulto Jovem
20.
J Fungi (Basel) ; 7(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467409

RESUMO

We describe a case of chronic meningoencephalitis with hydrocephalus caused by Cryptococcus bacillisporus (VGIII) in an immunocompetent patient from Santa Cruz, Bolivia. This first report of a member of the Cryptococcus gattii species complex from Bolivia suggests that C. bacillisporus (VGIII) is present in this tropical region of the country and complements our epidemiological and clinical knowledge of this group of emerging fungal pathogens in South America.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA