RESUMO
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population with high immunosuppressive activity that proliferates in infections, inflammation, and tumor microenvironments. In tumors, MDSC exert immunosuppression mainly by producing reactive oxygen species (ROS), a process triggered by the NADPH oxidase 2 (NOX2) activity. NOX2 is functionally coupled with the Hv1 proton channel in certain immune cells to support sustained free-radical production. However, a functional expression of the Hv1 channel in MDSC has not yet been reported. Here, we demonstrate that mouse MDSC express functional Hv1 proton channel by immunofluorescence microscopy, flow cytometry, and Western blot, besides performing a biophysical characterization of its macroscopic currents via patch-clamp technique. Our results show that the immunosuppression by MDSC is conditional to their ability to decrease the proton concentration elevated by the NOX2 activity, rendering Hv1 a potential drug target for cancer treatment.
Assuntos
Canais Iônicos , Células Supressoras Mieloides , Prótons , Linfócitos T , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologiaRESUMO
The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic-hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.
Assuntos
Antifibrinolíticos , Ciona , Animais , Prótons , Aminoácidos , ArgininaRESUMO
The infant mortality rate (IMR) is still a key indicator in a middle-income country such as Ecuador where a slightly increase up to 11.75 deaths per thousand life births has been observed in 2019. The purpose of this study is to propose and apply a prioritization method that combines clusters detection (Local Indicators of Spatial Association, LISA) and a monotonic statistic depicting time trend over 10 years (Mann-Kendall) at municipal level. Annual national databases (2010 to 2019) of live births and general deaths are downloaded from National Institute of Statistics and Censuses (INEC). The results allow identifying a slight increase in the IMR at the national level from 9.85 in 2014 to 11.75 in 2019, neonatal mortality accounted for 60% of the IMR in the last year. The LISA analysis allowed observing that the high-high clusters are mainly concentrated in the central highlands. At the local level, Piñas, Cuenca, Ibarra and Babahoyo registered the highest growth trends (0.7,1). The combination of techniques made it possible to identify eight priority counties, half of them pertaining to the highlands region, two to the coastal region and two to the Amazon region. To keep infant mortality at a low level is necessary to prioritize critical areas where public allocation of funds should be concentrated and formulation of policies.
Assuntos
Censos , Mortalidade Infantil , Equador/epidemiologia , Serviços de Saúde , Humanos , Renda , Lactente , Recém-NascidoRESUMO
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Assuntos
Aquaporinas , Aquaporinas/metabolismo , Simulação de Dinâmica Molecular , Água/metabolismo , Biofísica , Permeabilidade da Membrana CelularRESUMO
The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.
RESUMO
Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance-voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
RESUMO
PURPOSE: While the annual rate of new HIV infections and diagnoses has remained stable for most groups, troubling increases are seen in transgender women and racial/ethnic-minority men who have sex with men (MSM), groups that are disproportionately affected by HIV. The primary purpose of this systematic review is to examine factors that impact attitudes and beliefs about preexposure prophylaxis (PrEP) and treatment as prevention (TasP) and to explore barriers to PrEP uptake in MSM and transgender women. METHODS: Using MeSH terms and relevant keywords, we conducted a systematic review of studies published between 2010 and 2019. We searched 4 literature databases and identified studies on MSM and transgender women to elucidate perceptions of PrEP and TasP as well as barriers to access. RESULTS: The search yielded several prominent themes associated with beliefs about HIV prevention approaches and barriers to PrEP access in MSM and transgender women. One was a lack of awareness or insufficient knowledge of PrEP and TasP. Structural barriers and geographic isolation also prevent access to HIV prevention. Sexual minority and HIV-related stigma, internalized homonegativity, and misinterpretations of messages within HIV prevention campaigns have negatively impacted PrEP uptake and beliefs about PrEP and TasP. Quality of the relationship MSM or transgender people have with their health care provider can facilitate or hinder HIV prevention. Finally, variability in beliefs about the efficacy of TasP has negatively affected the impact of TasP messaging campaigns. CONCLUSIONS: Although there is evidence of increasing PrEP use in at-risk individuals, several barriers prevent wider acceptance and uptake. Misunderstanding about the meaning of "undetectable" and skepticism about the evidence behind TasP messaging campaigns are likely to delay the World Health Organization's stated goal of getting to zero transmissions.
RESUMO
Traditional ecological knowledge of indigenous groups in the southeastern Colombian Amazon coincides in identifying the two main hydrological transition periods (wet-dry: August-November; dry-wet: March-April) as those with greater susceptibility to disease in humans. Here we analyze the association between indigenous knowledge about these two periods and the incidence of two vector-borne diseases: malaria and dengue. We researched seven "ecological calendars" from three regions in the Colombian Amazon, malaria and dengue cases reported from 2007 to 2019 by the Colombian National Institute of Health, and daily temperature and precipitation data from eight meteorological stations in the region from 1990-2019 (a climatological normal). Malaria and dengue follow a seasonal pattern: malaria has a peak from August to November, corresponding with the wet-dry transition (the "season of the worms" in the indigenous calendars), and dengue has a peak in March and April, coinciding with the dry-wet transition. Previous studies have shown a positive correlation between rainfall and dengue and a negative correlation between rainfall and malaria. However, as the indigenous ecological knowledge codified in the calendars suggests, disease prediction cannot be reduced to a linear correlation with a single environmental variable. Our data show that two major aspects of the indigenous calendars (the time of friaje as a critical marker of the year and the hydrological transition periods as periods of greater susceptibility to diseases) are supported by meteorological data and by the available information about the incidence of malaria and dengue.(AU)
Los conocimientos ecológicos tradicionales de grupos indígenas del sureste de la Amazonia colombiana coinciden en identificar dos principales periodos de transición hidrológica (seco-húmedo: agosto-noviembre; húmedo-seco: marzo-abril) como los de mayor susceptibilidad a enfermedades en humanos. Aquí analizamos la asociación entre el conocimiento indígena sobre estos dos periodos y la incidencia de dos enfermedades transmitidas por vectores: malaria y dengue. Investigamos siete calendarios ecológicos de tres regiones en la Amazonia colombiana, casos de dengue y malaria reportados de 2007 hasta 2019 por el Instituto Nacional de Salud de Colombia y datos diarios de temperatura y precipitación de ocho estaciones meteorológicas en la región, de 1990 a 2019 (una normal climatológica). Malaria y dengue siguen un patrón estacional, la malaria tiene un pico de agosto a noviembre, correspondiendo con la transición húmedo-seco (el "tiempo de gusano" según los calendarios indígenas), mientras que dengue tiene un pico de marzo a abril, coincidiendo con la transición seco-húmedo. Estudios previos mostraron una correlación positiva entre precipitación y dengue, y una correlación negativa entre precipitación y malaria. Sin embargo, como lo sugiere el conocimiento ecológico codificado en los calendarios indígenas, la predicción de enfermedades no puede reducirse a una correlación lineal con una sola variable medioambiental. Nuestros datos muestran que dos aspectos principales de los calendarios indígenas (el tiempo de friaje como un marcador crítico anual y los periodos de transición hidrológica como épocas de mayor susceptibilidad a enfermedades) están soportados por datos meteorológicos e información disponible acerca de la incidencia de malaria y dengue.(AU)