Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 612(7940): 488-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450990

RESUMO

Insect societies are tightly integrated, complex biological systems in which group-level properties arise from the interactions between individuals1-4. However, these interactions have not been studied systematically and therefore remain incompletely known. Here, using a reverse engineering approach, we reveal that unlike solitary insects, ant pupae extrude a secretion derived from the moulting fluid that is rich in nutrients, hormones and neuroactive substances. This secretion elicits parental care behaviour and is rapidly removed and consumed by the adults. This behaviour is crucial for pupal survival; if the secretion is not removed, pupae develop fungal infections and die. Analogous to mammalian milk, the secretion is also an important source of early larval nutrition, and young larvae exhibit stunted growth and decreased survival without access to the fluid. We show that this derived social function of the moulting fluid generalizes across the ants. This secretion thus forms the basis of a central and hitherto overlooked interaction network in ant societies, and constitutes a rare example of how a conserved developmental process can be co-opted to provide the mechanistic basis of social interactions. These results implicate moulting fluids in having a major role in the evolution of ant eusociality.


Assuntos
Formigas , Líquidos Corporais , Muda , Pupa , Comportamento Social , Animais , Formigas/crescimento & desenvolvimento , Formigas/fisiologia , Larva/fisiologia , Muda/fisiologia , Pupa/fisiologia , Líquidos Corporais/fisiologia
2.
Nature ; 612(7940): 495-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450981

RESUMO

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Assuntos
Reparo do DNA , Anemia de Fanconi , Genômica , Neoplasias de Cabeça e Pescoço , Humanos , Aldeídos/efeitos adversos , Aldeídos/metabolismo , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Dano ao DNA/efeitos dos fármacos
3.
Genes Dev ; 34(23-24): 1713-1734, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184221

RESUMO

Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/genética , Melanócitos/citologia , Transdução de Sinais/genética , Células-Tronco/citologia , Animais , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Análise de Célula Única
4.
PLoS Biol ; 22(9): e3002767, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39316623

RESUMO

Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.


Assuntos
COVID-19 , SARS-CoV-2 , Internalização do Vírus , Humanos , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/genética , Células HEK293 , Sistemas CRISPR-Cas/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Interferons/metabolismo , Interferons/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Antígenos de Diferenciação
5.
Nature ; 577(7788): 121-126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853060

RESUMO

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by 'reader' proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatin-reader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


Assuntos
Linhagem da Célula , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Mutação com Ganho de Função , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Néfrons/metabolismo , Néfrons/patologia , Fatores de Transcrição/química , Fatores de Transcrição/genética
6.
Nucleic Acids Res ; 52(9): 4950-4968, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477352

RESUMO

Alterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks. We additionally observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Finally, we demonstrated that loss of ATRX in a mesenchymal malignancy, undifferentiated pleomorphic sarcoma, results in similar epigenetic disruption and de-repression of transposable elements. Together, our results reveal a role for ATRX in maintaining epigenetic states and transcriptional repression in mesenchymal progenitors and tumor cells and in preventing aberrant differentiation in the progenitor context.


Assuntos
Diferenciação Celular , Heterocromatina , Células-Tronco Mesenquimais , Proteína Nuclear Ligada ao X , Animais , Humanos , Camundongos , Adipogenia , Elementos de DNA Transponíveis/genética , Epigênese Genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(28): e2206113119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867764

RESUMO

The Hippo signaling pathway acts as a brake on regeneration in many tissues. This cascade of kinases culminates in the phosphorylation of the transcriptional cofactors Yap and Taz, whose concentration in the nucleus consequently remains low. Various types of cellular signals can reduce phosphorylation, however, resulting in the accumulation of Yap and Taz in the nucleus and subsequently in mitosis. We earlier identified a small molecule, TRULI, that blocks the final kinases in the pathway, Lats1 and Lats2, and thus elicits proliferation of several cell types that are ordinarily postmitotic and aids regeneration in mammals. In the present study, we present the results of chemical modification of the original compound and demonstrate that a derivative, TDI-011536, is an effective blocker of Lats kinases in vitro at nanomolar concentrations. The compound fosters extensive proliferation in retinal organoids derived from human induced pluripotent stem cells. Intraperitoneal administration of the substance to mice suppresses Yap phosphorylation for several hours and induces transcriptional activation of Yap target genes in the heart, liver, and skin. Moreover, the compound initiates the proliferation of cardiomyocytes in adult mice following cardiac cryolesions. After further chemical refinement, related compounds might prove useful in protective and regenerative therapies.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Regeneração , Animais , Proliferação de Células/efeitos dos fármacos , Coração/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Camundongos , Organoides/fisiologia , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Regeneração/genética , Retina/fisiologia , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(41): 25732-25741, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989154

RESUMO

Bladder cancer prognosis is closely linked to the underlying differentiation state of the tumor, ranging from the less aggressive and most-differentiated luminal tumors to the more aggressive and least-differentiated basal tumors. Sequencing of bladder cancer has revealed that loss-of-function mutations in chromatin regulators and mutations that activate receptor tyrosine kinase (RTK) signaling frequently occur in bladder cancer. However, little is known as to whether and how these two types of mutations functionally interact or cooperate to regulate tumor growth and differentiation state. Here, we focus on loss of the histone demethylase UTX (also known as KDM6A) and activation of the RTK FGFR3, two events that commonly cooccur in muscle invasive bladder tumors. We show that UTX loss and FGFR3 activation cooperate to disrupt the balance of luminal and basal gene expression in bladder cells. UTX localized to enhancers surrounding many genes that are important for luminal cell fate, and supported the transcription of these genes in a catalytic-independent manner. In contrast to UTX, FGFR3 activation was associated with lower expression of luminal genes in tumors and FGFR inhibition increased transcription of these same genes in cell culture models. This suggests an antagonistic relationship between UTX and FGFR3. In support of this model, UTX loss-of-function potentiated FGFR3-dependent transcriptional effects and the presence of UTX blocked an FGFR3-mediated increase in the colony formation of bladder cells. Taken together, our study reveals how mutations in UTX and FGFR3 converge to disrupt bladder differentiation programs that could serve as a therapeutic target.


Assuntos
Histona Desmetilases/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Diferenciação Celular , Cromatina/genética , Cromatina/metabolismo , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/fisiopatologia
9.
Proc Natl Acad Sci U S A ; 117(26): 15085-15095, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546527

RESUMO

Comparative transcriptomics between differentiating human pluripotent stem cells (hPSCs) and developing mouse neurons offers a powerful approach to compare genetic and epigenetic pathways in human and mouse neurons. To analyze human Purkinje cell (PC) differentiation, we optimized a protocol to generate human pluripotent stem cell-derived Purkinje cells (hPSC-PCs) that formed synapses when cultured with mouse cerebellar glia and granule cells and fired large calcium currents, measured with the genetically encoded calcium indicator jRGECO1a. To directly compare global gene expression of hPSC-PCs with developing mouse PCs, we used translating ribosomal affinity purification (TRAP). As a first step, we used Tg(Pcp2-L10a-Egfp) TRAP mice to profile actively transcribed genes in developing postnatal mouse PCs and used metagene projection to identify the most salient patterns of PC gene expression over time. We then created a transgenic Pcp2-L10a-Egfp TRAP hPSC line to profile gene expression in differentiating hPSC-PCs, finding that the key gene expression pathways of differentiated hPSC-PCs most closely matched those of late juvenile mouse PCs (P21). Comparative bioinformatics identified classical PC gene signatures as well as novel mitochondrial and autophagy gene pathways during the differentiation of both mouse and human PCs. In addition, we identified genes expressed in hPSC-PCs but not mouse PCs and confirmed protein expression of a novel human PC gene, CD40LG, expressed in both hPSC-PCs and native human cerebellar tissue. This study therefore provides a direct comparison of hPSC-PC and mouse PC gene expression and a robust method for generating differentiated hPSC-PCs with human-specific gene expression for modeling developmental and degenerative cerebellar disorders.


Assuntos
Diferenciação Celular , Células de Purkinje/metabolismo , Transcriptoma , Animais , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas/genética , Proteínas/metabolismo , Células de Purkinje/citologia
10.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38237588

RESUMO

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Assuntos
Doença de Huntington , Animais , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Córtex Cerebral/metabolismo , Núcleo Solitário/metabolismo , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
11.
Nat Metab ; 6(4): 697-707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413806

RESUMO

Post-translational modifications (PTMs) on histones are a key source of regulation on chromatin through impacting cellular processes, including gene expression1. These PTMs often arise from metabolites and are thus impacted by metabolism and environmental cues2-7. One class of metabolically regulated PTMs are histone acylations, which include histone acetylation, butyrylation, crotonylation and propionylation3,8. As these PTMs can be derived from short-chain fatty acids, which are generated by the commensal microbiota in the intestinal lumen9-11, we aimed to define how microbes impact the host intestinal chromatin landscape, mainly in female mice. Here we show that in addition to acetylation, intestinal epithelial cells from the caecum and distal mouse intestine also harbour high levels of butyrylation and propionylation on lysines 9 and 27 of histone H3. We demonstrate that these acylations are regulated by the microbiota and that histone butyrylation is additionally regulated by the metabolite tributyrin. Tributyrin-regulated gene programmes are correlated with histone butyrylation, which is associated with active gene-regulatory elements and levels of gene expression. Together, our study uncovers a regulatory layer of how the microbiota and metabolites influence the intestinal epithelium through chromatin, demonstrating a physiological setting in which histone acylations are dynamically regulated and associated with gene regulation.


Assuntos
Microbioma Gastrointestinal , Regulação da Expressão Gênica , Histonas , Processamento de Proteína Pós-Traducional , Animais , Histonas/metabolismo , Camundongos , Feminino , Mucosa Intestinal/metabolismo , Acetilação , Intestinos/microbiologia , Triglicerídeos/metabolismo , Camundongos Endogâmicos C57BL
12.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291334

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Assuntos
Corpo Estriado , Doença de Huntington , Humanos , Animais , Cerebelo/metabolismo , Doença de Huntington/genética , Modelos Animais de Doenças
13.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39091814

RESUMO

Biallelic pathogenic variants in the essential DNA repair gene BRCA2 causes Fanconi anemia, complementation group FA-D1. Patients in this group are highly prone to develop embryonal tumors, most commonly medulloblastoma arising from the cerebellar granule cell progenitors (GCPs). GCPs undergo high proliferation in the postnatal cerebellum under SHH activation, but the type of DNA lesions that require the function of the BRCA2 to prevent tumorigenesis remains unknown. To identify such lesions, we assessed both GCP neurodevelopment and tumor formation using a mouse model with deletion of exons three and four of Brca2 in the central nervous system, coupled with global Trp53 loss. Brca2 Δex3-4 ;Trp53 -/- animals developed SHH subgroup medulloblastomas with complete penetrance. Whole-genome sequencing of the tumors identified structural variants with breakpoints enriched in areas overlapping G-quadruplexes (G4s). Brca2-deficient GCPs exhibited decreased replication speed in the presence of the G4-stabilizer pyridostatin. Pif1 helicase, which resolves G4s during replication, was highly upregulated in tumors, and Pif1 knockout in primary MB tumor cells resulted in increased genome instability upon pyridostatin treatment. These data suggest that G4s may represent sites prone to replication stalling in highly proliferative GCPs and without BRCA2, G4s become a source of genome instability. Tumor cells upregulate G4-resolving helicases to facilitate rapid proliferation through G4s highlighting PIF1 helicase as a potential therapeutic target for treatment of BRCA2-deficient medulloblastomas.

14.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609273

RESUMO

Alterations in the tumor suppressor ATRX are recurrently observed in several cancer types including sarcomas, which are mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors (Pparγ and Cebpα) and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks at putative enhancer elements and promoters. Finally, we observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Our results demonstrate that ATRX functions to buffer against differentiation in mesenchymal progenitor cells, which has implications for understanding ATRX loss of function in sarcomas.

15.
Curr Biol ; 33(24): 5456-5466.e5, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38070504

RESUMO

Insects and mammals have independently evolved odorant receptor genes that are arranged in large genomic tandem arrays. In mammals, each olfactory sensory neuron chooses to express a single receptor in a stochastic process that includes substantial chromatin rearrangements. Here, we show that ants, which have the largest odorant receptor repertoires among insects, employ a different mechanism to regulate gene expression from tandem arrays. Using single-nucleus RNA sequencing, we found that ant olfactory sensory neurons choose different transcription start sites along an array but then produce mRNA from many downstream genes. This can result in transcripts from dozens of receptors being present in a single nucleus. Such rampant receptor co-expression at first seems difficult to reconcile with the narrow tuning of the ant olfactory system. However, RNA fluorescence in situ hybridization showed that only mRNA from the most upstream transcribed odorant receptor seems to reach the cytoplasm where it can be translated into protein, whereas mRNA from downstream receptors gets sequestered in the nucleus. This implies that, despite the extensive co-expression of odorant receptor genes, each olfactory sensory neuron ultimately only produces one or very few functional receptors. Evolution has thus found different molecular solutions in insects and mammals to the convergent challenge of selecting small subsets of receptors from large odorant receptor repertoires.


Assuntos
Formigas , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Formigas/genética , Formigas/metabolismo , Hibridização in Situ Fluorescente , Neurônios Receptores Olfatórios/fisiologia , Mamíferos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808786

RESUMO

Chromatin is a crucial regulator of gene expression and tightly controls development across species. Mutations in only one copy of multiple histone genes were identified in children with developmental disorders characterized by microcephaly, but their mechanistic roles in development remain unclear. Here we focus on dominant mutations affecting histone H4 lysine 91. These H4K91 mutants form aberrant nuclear puncta at specific heterochromatin regions. Mechanistically, H4K91 mutants demonstrate enhanced binding to the histone variant H3.3, and ablation of H3.3 or the H3.3-specific chaperone DAXX diminishes the mutant localization to chromatin. Our functional studies demonstrate that H4K91 mutant expression increases chromatin accessibility, alters developmental gene expression through accelerating pro-neural differentiation, and causes reduced mouse brain size in vivo, reminiscent of the microcephaly phenotypes of patients. Together, our studies unveil a distinct molecular pathogenic mechanism from other known histone mutants, where H4K91 mutants misregulate cell fate during development through abnormal genomic localization.

17.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333326

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

18.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37162977

RESUMO

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive mHTT -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify the vulnerable layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT -CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in the HD cerebral cortex.

19.
Sci Transl Med ; 15(684): eabq8476, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812347

RESUMO

Periodontal disease is more common in individuals with rheumatoid arthritis (RA) who have detectable anti-citrullinated protein antibodies (ACPAs), implicating oral mucosal inflammation in RA pathogenesis. Here, we performed paired analysis of human and bacterial transcriptomics in longitudinal blood samples from RA patients. We found that patients with RA and periodontal disease experienced repeated oral bacteremias associated with transcriptional signatures of ISG15+HLADRhi and CD48highS100A2pos monocytes, recently identified in inflamed RA synovia and blood of those with RA flares. The oral bacteria observed transiently in blood were broadly citrullinated in the mouth, and their in situ citrullinated epitopes were targeted by extensively somatically hypermutated ACPAs encoded by RA blood plasmablasts. Together, these results suggest that (i) periodontal disease results in repeated breaches of the oral mucosa that release citrullinated oral bacteria into circulation, which (ii) activate inflammatory monocyte subsets that are observed in inflamed RA synovia and blood of RA patients with flares and (iii) activate ACPA B cells, thereby promoting affinity maturation and epitope spreading to citrullinated human antigens.


Assuntos
Artrite Reumatoide , Doenças Periodontais , Humanos , Autoanticorpos , Mucosa Bucal , Formação de Anticorpos , Epitopos , Bactérias
20.
DNA Repair (Amst) ; 113: 103320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35316728

RESUMO

Double-strand break (DSB) repair relies on DNA damage response (DDR) factors including BRCA1, BRCA2, and RAD51, which promote homology-directed repair (HDR); 53BP1, which affects single-stranded DNA formation; and proteins that mediate end-joining. Here we show that the CRL4/DDB1/WDR70 complex (CRL4WDR70) controls the expression of DDR factors. Auxin-mediated degradation of WDR70 led to reduced expression of BRCA1, BRCA2, RAD51, and other HDR factors; 53BP1 and its downstream effectors; and other DDR factors. In contrast, cNHEJ factors were generally unaffected. WDR70 loss abrogated the localization of HDR factors to DSBs and elicited hallmarks of genomic instability, although 53BP1/RIF1 foci still formed. Mutation of the DDB1-binding WD40 motif, disruption of DDB1, or inhibition of cullins phenocopied WDR70 loss, consistent with CRL4, DDB1, and WDR70 functioning as a complex. RNA-sequencing revealed that WDR70 degradation affects the mRNA levels of DDR and many other factors. The data indicate that CRL4WDR70 is critical for expression of myriad genes including BRCA1, BRCA2, and RAD51.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína BRCA1/metabolismo , Reparo de DNA por Recombinação , DNA de Cadeia Simples
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA