Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Tree Physiol ; 20(14): 977-86, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11303573

RESUMO

Carbon assimilation by Cedrela odorata L. (Meliaceae) seedlings was investigated in ambient and elevated CO2 concentrations ([CO2]) for 119 days, using small fumigation chambers. A solution containing macro- and micronutrients was supplied at two rates. The 5% rate (high rate) was designed to avoid nutrient limitation and allow a maximum rate of growth. The 1% rate (low rate) allowed examination of the effect of the nutrient limitation-elevated CO2 interaction on carbon assimilation. Root growth was stimulated by 23% in elevated [CO2] at a high rate of nutrient supply, but this did not lead to a change in the root:shoot ratio. Total biomass did not change at either rate of nutrient supply, despite an increase in relative growth rate at the low nutrient supply rate. Net assimilation rates and relative growth rates were stimulated by the high rate of nutrient addition, irrespective of [CO2]. We used a biochemical model of photosynthesis to investigate assimilation at the leaf level. Maximum rate of electron transport (Jmax) and maximum velocity of carboxylation (Vcmax) did not differ significantly with CO2 treatment, but showed a substantial reduction at the low rate of nutrient supply. Across both CO2 treatments, mean Jmax for seedlings grown at a high rate of nutrient supply was 75 micromol m(-2) s(-1) and mean Vcmax was 27 micromol m(-2) s(-1). The corresponding mean values for seedlings grown at a low rate of nutrient supply were 36 micromol m(-2) s(-1) and 15 micromol m(-2) s(-1), respectively. Concentrations of leaf nitrogen, on a mass basis, were significantly decreased by the low nutrient supply rate, in proportion to the observed decrease in photosynthetic parameters. Chlorophyll and carbohydrate concentrations of leaves were unaffected by growth [CO2]. Because there was no net increase in growth in response to elevated [CO2], despite increased assimilation of carbon at the leaf level, we hypothesize that the rate of respiration of non-photosynthetic organs was increased.


Assuntos
Dióxido de Carbono/metabolismo , Árvores/fisiologia , Carbono/análise , Clorofila/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/química , Raízes de Plantas/fisiologia , Caules de Planta/química , Caules de Planta/fisiologia , Árvores/crescimento & desenvolvimento , Clima Tropical
2.
Tree Physiol ; 20(3): 179-186, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12651470

RESUMO

The vertical profile in leaf photosynthetic capacity was investigated in a terra firme rain forest in central Amazonia. Measurements of photosynthesis were made on leaves at five levels in the canopy, and a model was fitted to describe photosynthetic capacity for each level. In addition, vertical profiles of photosynthetic photon flux density, leaf nitrogen concentration and specific leaf area were measured. The derived parameters for maximum rate of electron transport (J(max)) and maximum rate of carboxylation by Rubisco (V(cmax)) increased significantly with canopy height (P < 0.05). The highest J(max) for a single canopy level was measured at the penultimate canopy level (20 m) and was 103.9 &mgr;mol m(-2) s(-1) +/- 24.2 (SE). The highest V(cmax) per canopy height was recorded at the top canopy level (24 m) and was 42.8 +/- 5.9 &mgr;mol m(-2) s(-1). Values of J(max) and V(cmax) at ground level were 35.8 +/- 3.3 and 20.5 +/- 1.3 &mgr;mol m(-2) s(-1), espectively. The increase in photosynthetic capacity with increasing canopy height was strongly correlated with leaf nitrogen concentration when examined on a leaf area basis, but was only weakly correlated on a mass basis. The correlation on an area basis can be largely explained by the concomitant decrease in specific leaf area with increasing height. Apparent daytime leaf respiration, on an area basis, also increased significantly with canopy height (P < 0.05). We conclude that canopy photosynthetic capacity can be represented as an average vertical profile, perturbations of which may be explained by variations in the environmental variables driving photosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA