Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 68(3): e12636, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043640

RESUMO

Environmental pollution in the form of particulate matter <2.5 µm (PM2.5 ) is a major risk factor for diseases such as lung cancer, chronic respiratory infections, and major cardiovascular diseases. Our goal was to show that PM2.5 eliciting a proinflammatory response activates the immune-pineal axis, reducing the pineal synthesis and increasing the extrapineal synthesis of melatonin. Herein, we report that the exposure of rats to polluted air for 6 hours reduced nocturnal plasma melatonin levels and increased lung melatonin levels. Melatonin synthesis in the lung reduced lipid peroxidation and increased PM2.5 engulfment and cell viability by activating high-affinity melatonin receptors. Diesel exhaust particles (DEPs) promoted the synthesis of melatonin in a cultured cell line (RAW 264.7 cells) and rat alveolar macrophages via the expression of the gene encoding for AANAT through a mechanism dependent on activation of the NFκB pathway. Expression of the genes encoding AANAT, MT1, and MT2 was negatively correlated with cellular necroptosis, as disclosed by analysis of Gene Expression Omnibus (GEO) microarray data from the human alveolar macrophages of nonsmoking subjects. The enrichment score for antioxidant genes obtained from lung gene expression data (GTEx) was significantly correlated with the levels of AANAT and MT1 but not the MT2 melatonin receptor. Collectively, these data provide a systemic and mechanistic rationale for coordination of the pineal and extrapineal synthesis of melatonin by a standard damage-associated stimulus, which activates the immune-pineal axis and provides a new framework for understanding the effects of air pollution on lung diseases.


Assuntos
Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Melatonina/metabolismo , Material Particulado/efeitos adversos , Glândula Pineal/metabolismo , Receptores de Melatonina/metabolismo , Poluição do Ar/efeitos adversos , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Humanos , Ratos
2.
J Pineal Res ; 67(3): e12599, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31356684

RESUMO

Melatonin production by pineal glands is modulated by several immune signals. The nuclear translocation of nuclear factor kappa-B (NFκB) homodimers, lacking transactivation domains, once induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF), inhibits the expression of Aanat gene and the synthesis of noradrenaline (NA)-induced melatonin. Interferon gamma (IFN-γ), on the other hand, increases melatonin synthesis. Furthermore, this cytokine activates the signal transducer as well as the activator of transcription 1 (STAT1) pathway, which was never evaluated as a melatonin synthesis modulator before. Reports demonstrated that IFN-γ might also activate NFκB. The present study evaluated the role of STAT1-NFκB crosstalk triggered by IFN-γ regarding the regulation of NA-induced pineal glands' hormonal production. Moreover, IFN-γ treatment increased NA-induced Aanat transcription, in addition to the synthesis of N-acetylserotonin (NAS) and melatonin. These effects were associated with STAT1 nuclear translocation, confirmed by the co-immunoprecipitation of STAT1 and Aanat promoter. Pharmacological STAT1 enhancement augmented NA-induced Aanat transcription as well as NAS and melatonin production. Additionally, IFN-γ induced the nuclear translocation of RelA-NFκB subunits. The blockade of this pathway prevented IFN-γ effects on the pineal function. The present data show that STAT1 and NFκB crosstalk controls melatonin production through a synergistic mechanism, disclosing a new integrative mechanism regarding pineal hormonal activity control.


Assuntos
Interferon gama/farmacologia , NF-kappa B/metabolismo , Norepinefrina/farmacologia , Glândula Pineal/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Imunoprecipitação da Cromatina , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Masculino , Técnicas de Cultura de Órgãos , Glândula Pineal/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos , Ratos Wistar
3.
J Pineal Res ; 49(2): 183-92, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20586888

RESUMO

Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.


Assuntos
Receptores de Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Glândula Pineal/metabolismo , Receptor 4 Toll-Like/metabolismo , Análise de Variância , Animais , Extratos Celulares/química , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Imunidade Inata/fisiologia , Imuno-Histoquímica , Receptores de Lipopolissacarídeos/biossíntese , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Masculino , Glândula Pineal/citologia , Glândula Pineal/imunologia , RNA Mensageiro , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Técnicas de Cultura de Tecidos , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética
4.
PLoS One ; 7(7): e40142, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768337

RESUMO

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.


Assuntos
Melatonina/biossíntese , Neuroglia/metabolismo , Comunicação Parácrina/fisiologia , Glândula Pineal/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Fatores de Necrose Tumoral/metabolismo , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Melatonina/imunologia , Neuroglia/citologia , Neuroglia/imunologia , Comunicação Parácrina/efeitos dos fármacos , Glândula Pineal/citologia , Glândula Pineal/imunologia , Ratos , Ratos Wistar , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-22654792

RESUMO

The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target of TNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA