Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circ Res ; 119(11): 1215-1225, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27750208

RESUMO

RATIONALE: Ischemic mitral regurgitation, a complication after myocardial infarction (MI), induces adaptive mitral valve (MV) responses that may be initially beneficial but eventually lead to leaflet fibrosis and MV dysfunction. We sought to examine the MV endothelial response and its potential contribution to ischemic mitral regurgitation. OBJECTIVE: Endothelial, interstitial, and hematopoietic cells in MVs from post-MI sheep were quantified. MV endothelial CD45, found post MI, was analyzed in vitro. METHODS AND RESULTS: Ovine MVs, harvested 6 months after inferior MI, showed CD45, a protein tyrosine phosphatase, colocalized with von Willebrand factor, an endothelial marker. Flow cytometry of MV cells revealed significant increases in CD45+ endothelial cells (VE-cadherin+/CD45+/α-smooth muscle actin [SMA]+ and VE-cadherin+/CD45+/αSMA- cells) and possible fibrocytes (VE-cadherin-/CD45+/αSMA+) in inferior MI compared with sham-operated and normal sheep. CD45+ cells correlated with MV fibrosis and mitral regurgitation severity. VE-cadherin+/CD45+/αSMA+ cells suggested that CD45 may be linked to endothelial-to-mesenchymal transition (EndMT). MV endothelial cells treated with transforming growth factor-ß1 to induce EndMT expressed CD45 and fibrosis markers collagen 1 and 3 and transforming growth factor-ß1 to 3, not observed in transforming growth factor-ß1-treated arterial endothelial cells. A CD45 protein tyrosine phosphatase inhibitor blocked induction of EndMT and fibrosis markers and inhibited EndMT-associated migration of MV endothelial cells. CONCLUSIONS: MV endothelial cells express CD45, both in vivo post MI and in vitro in response to transforming growth factor-ß1. A CD45 phosphatase inhibitor blocked hallmarks of EndMT in MV endothelial cells. These results point to a novel, functional requirement for CD45 phosphatase activity in EndMT. The contribution of CD45+ endothelial cells to MV adaptation and fibrosis post MI warrants investigation.


Assuntos
Células Endoteliais/metabolismo , Antígenos Comuns de Leucócito/biossíntese , Valva Mitral/citologia , Valva Mitral/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Antígenos Comuns de Leucócito/genética , Infarto do Miocárdio/genética , Ovinos
2.
PLoS Comput Biol ; 10(1): e1003421, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391488

RESUMO

Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.


Assuntos
Hepcidinas/genética , Homeostase , Ferro/metabolismo , Regiões Promotoras Genéticas , Algoritmos , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Humanos , Inflamação , Interleucina-6/metabolismo , Modelos Teóricos , Mutagênese , Peptídeos/química , Fosforilação , Transdução de Sinais , Termodinâmica , Fatores de Transcrição/metabolismo
3.
J Biol Chem ; 287(44): 37472-82, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22932892

RESUMO

The peptide hormone hepcidin regulates mammalian iron homeostasis by blocking ferroportin-mediated iron export from macrophages and the duodenum. During inflammation, hepcidin is strongly induced by interleukin 6, eventually leading to the anemia of chronic disease. Here we show that hepatoma cells and primary hepatocytes strongly up-regulate hepcidin when exposed to low concentrations of H(2)O(2) (0.3-6 µM), concentrations that are comparable with levels of H(2)O(2) released by inflammatory cells. In contrast, bolus treatment of H(2)O(2) has no effect at low concentrations and even suppresses hepcidin at concentrations of >50 µM. H(2)O(2) treatment synergistically stimulates hepcidin promoter activity in combination with recombinant interleukin-6 or bone morphogenetic protein-6 and in a manner that requires a functional STAT3-responsive element. The H(2)O(2)-mediated hepcidin induction requires STAT3 phosphorylation and is effectively blocked by siRNA-mediated STAT3 silencing, overexpression of SOCS3 (suppressor of cytokine signaling 3), and antioxidants such as N-acetylcysteine. Glycoprotein 130 (gp130) is required for H(2)O(2) responsiveness, and Janus kinase 1 (JAK1) is required for adequate basal signaling, whereas Janus kinase 2 (JAK2) is dispensable upstream of STAT3. Importantly, hepcidin levels are also increased by intracellular H(2)O(2) released from the respiratory chain in the presence of rotenone or antimycin A. Our results suggest a novel mechanism of hepcidin regulation by nanomolar levels of sustained H(2)O(2). Thus, similar to cytokines, H(2)O(2) provides an important regulatory link between inflammation and iron metabolism.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peróxido de Hidrogênio/farmacologia , Mediadores da Inflamação/farmacologia , Fator de Transcrição STAT3/metabolismo , Regulação para Cima , Acetilcisteína/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Sítios de Ligação , Proteína Morfogenética Óssea 6/fisiologia , Linhagem Celular Tumoral , Sequestradores de Radicais Livres/farmacologia , Hepcidinas , Humanos , Interleucina-6/fisiologia , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Transcrição Gênica
4.
Haematologica ; 98(3): 444-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22983584

RESUMO

In conditions of increased erythropoiesis, expression of hepcidin, the master regulator of systemic iron homeostasis, is decreased to allow for the release of iron into the blood stream from duodenal enterocytes and macrophages. It has been suggested that hepcidin suppression is controlled by growth differentiation factor 15 (GDF15), a member of the transforming growth factor-ß superfamily of cytokines that is secreted from developing erythroblasts. In this study, we analyzed iron-related parameters in mice deficient for GDF15 under steady-state conditions and in response to increased erythropoietic activity induced by blood loss. We demonstrate that GDF15 suppresses the hepatic mRNA expression of some BMP/TGFß target genes but not of hepcidin, and show that GDF15 is not required to balance iron homeostasis in response to blood loss.


Assuntos
Fator 15 de Diferenciação de Crescimento/metabolismo , Homeostase , Ferro/metabolismo , Animais , Medula Óssea/metabolismo , Índices de Eritrócitos , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Flebotomia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/metabolismo
5.
Blood ; 115(13): 2657-65, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20040761

RESUMO

Hepcidin is the master regulatory hormone of systemic iron metabolism. Hepcidin deficiency causes common iron overload syndromes whereas its overexpression is responsible for microcytic anemias. Hepcidin transcription is activated by the bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways, whereas comparatively little is known about how hepcidin expression is inhibited. By using high-throughput siRNA screening we identified SMAD7 as a potent hepcidin suppressor. SMAD7 is an inhibitory SMAD protein that mediates a negative feedback loop to both transforming growth factor-beta and BMP signaling and that recently was shown to be coregulated with hepcidin via SMAD4 in response to altered iron availability in vivo. We show that SMAD7 is coregulated with hepcidin by BMPs in primary murine hepatocytes and that SMAD7 overexpression completely abolishes hepcidin activation by BMPs and transforming growth factor-beta. We identify a distinct SMAD regulatory motif (GTCAAGAC) within the hepcidin promoter involved in SMAD7-dependent hepcidin suppression, demonstrating that SMAD7 does not simply antagonize the previously reported hemojuvelin/BMP-responsive elements. This work identifies a potent inhibitory factor for hepcidin expression and uncovers a negative feedback pathway for hepcidin regulation, providing insight into a mechanism how hepcidin expression may be limited to avoid iron deficiency.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Hepatócitos/metabolismo , Ferro/metabolismo , Proteína Smad7/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Regulação para Baixo , Retroalimentação Fisiológica , Hepatócitos/efeitos dos fármacos , Hepcidinas , Humanos , Interleucina-6/farmacologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Smad7/antagonistas & inibidores , Proteína Smad7/química , Proteína Smad7/genética , Fator de Crescimento Transformador beta/farmacologia
6.
J Mol Med (Berl) ; 86(5): 531-40, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18421430

RESUMO

The precise regulation of the iron-regulatory hormone hepcidin is essential to maintain body iron homeostasis: Hepcidin deficiency induces iron overload, and hepcidin excess results in anaemia. Mutations in the gene HFE2 cause severe iron overload and are associated with low hepcidin expression. Recent data suggest that HFE2 is a bone morphogenetic protein (BMP) co-receptor, and that the decreased hepcidin mRNA expression because of HFE2 dysfunction is a result of impaired BMP signalling ability. In this study, we identify a critical BMP-responsive element (BMP-RE) at position -84/-79 of the hepcidin promoter. We show that this element mediates HFE2-dependent basal hepcidin mRNA expression under control conditions. Unexpectedly, the mutation of the same BMP-RE element also severely impairs hepcidin activation in response to IL-6. These data uncover a missing link in the HFE2-mediated control of hepcidin expression and suggest that the BMP-RE controls hepcidin promoter activity mediated by HFE2 and inflammatory stimuli.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Interleucina-6/farmacologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Elementos de Resposta/genética , Fator de Crescimento Transformador beta/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Pareamento de Bases , Sequência de Bases , Proteína Morfogenética Óssea 2 , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Ligadas por GPI , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína da Hemocromatose , Hepcidinas , Humanos , Proteínas de Membrana/genética , Modelos Genéticos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo
7.
J Mol Med (Berl) ; 89(8): 811-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21475976

RESUMO

Congenital dyserythropoietic anaemias (CDAs) are heterogeneous, hereditary disorders hallmarked by ineffective erythropoiesis and tissue iron overload. Growth differentiation factor 15 (GDF15) was suggested to mediate iron overload in iron-loading anaemias, such as the thalassaemias and CDAI by suppressing hepcidin, the key regulator of iron absorption. Here, we show that serum GDF15 concentrations are elevated in subjects with CDAI and CDAII. Despite similar disease characteristics, CDAI patients present with significantly higher GDF15 concentrations compared to CDAII patients. Hepcidin concentrations are inappropriately low in CDAII patients considering the severe hepatic iron overload associated with this disorder. GDF15 significantly correlates with the degree of anaemia (Hb), the response of erythropoiesis (reticulocyte index) as well as with iron availability in the serum (transferrin saturation). The observation that GDF15 is elevated in CDAII patients is consistent with the proposal that GDF15 is among the erythroid factors down-regulating hepcidin and contributing to iron overload in conditions of dyserythropoiesis.


Assuntos
Anemia Diseritropoética Congênita/sangue , Fator 15 de Diferenciação de Crescimento/sangue , Anemia Diseritropoética Congênita/patologia , Peptídeos Catiônicos Antimicrobianos/sangue , Hepcidinas , Humanos , Ferro/sangue , Índice de Gravidade de Doença
8.
J Mol Med (Berl) ; 87(5): 471-80, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19229506

RESUMO

The hemochromatosis proteins HFE, transferrin receptor 2 (TfR2) and hemojuvelin (HJV, HFE2) positively control expression of the major iron regulatory hormone hepcidin. HJV is a bone morphogenetic protein (BMP) co-receptor that enhances the cellular response to BMP cytokines via the phosphorylation of SMAD proteins. In this study, we show that two highly conserved and sequence-identical BMP-responsive elements located at positions -84/-79 (BMP-RE1) and -2,255/-2,250 (BMP-RE2) of the human hepcidin promoter are critical for both the basal hepcidin mRNA expression and the hepcidin response to BMP-2 and BMP-6. While BMP-RE1 and BMP-RE2 show additive effects in responding to HJV-mediated BMP signals, only BMP-RE1 that is located in close proximity to a previously identified STAT-binding site is important for the hepcidin response to IL-6. These data identify a missing link between the HJV/BMP signaling pathways and hepcidin transcription, and further define the connection between inflammation and BMP-dependent hepcidin promoter activation. As such, they provide important new information furthering our understanding of disorders of iron metabolism and the anemia of inflammation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Sequência de Bases , Sítios de Ligação/genética , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 6/farmacologia , Linhagem Celular Tumoral , Proteínas Ligadas por GPI , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína da Hemocromatose , Hepcidinas , Humanos , Interleucina-6/farmacologia , Luciferases/genética , Luciferases/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fosforilação , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição STAT/metabolismo , Homologia de Sequência do Ácido Nucleico , Proteínas Smad/metabolismo , Transfecção
9.
J Hepatol ; 48(5): 801-10, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18313788

RESUMO

BACKGROUND/AIMS: Hepcidin is a liver-produced hormone that regulates systemic iron homeostasis. Hepcidin expression is stimulated upon iron overload or inflammation while iron deficiency, anemia and tissue hypoxia are negative regulators. We investigated the involvement of 2-oxoglutarate-dependent oxygenases, HIF-1 and other transcription factors in the hypoxic suppression of hepcidin. METHODS: Northern blotting analysis and real time PCR were used to determine hepcidin mRNA levels in hepatoma cells and hepcidin promoter activity was measured using Huh7 cells transfected with suitable reporter constructs under various conditions. RESULTS: Treatment of human cultured hepatoma cells with hypoxia or known inhibitors of 2-oxoglutarate-dependent oxygenases, such as the iron chelator desferrioxamine, cobalt or the 2-oxoglutarate analogue dimethyl-oxalylglycine significantly reduced hepcidin mRNA levels and down-regulated its gene promoter activity. This effect was not dependent on the HREs or other known putative response elements in the hepcidin promoter and was observed even under interleukin-6 treatment. CONCLUSIONS: 2-Oxoglutarate-dependent oxygenases are important to maintain high hepcidin mRNA expression in a HIF-1-independent manner. We suggest that modulation of oxygenase activity may be of therapeutic value in iron-related disorders.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Regulação da Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Oxigenases/fisiologia , Linhagem Celular Tumoral , Hepcidinas , Humanos , Fator 1 Induzível por Hipóxia/fisiologia , Interleucina-6/biossíntese , Oxigenases/antagonistas & inibidores , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA