RESUMO
The term GETomics has been recently proposed to illustrate that human health and disease are actually the final outcome of many dynamic, interacting and cumulative gene (G) - environment (E) interactions that occur through the lifetime (T) of the individual. According to this new paradigm, the final outcome of any GxE interactions depends on both the age of the individual at which such GxE interaction occurs as well as on the previous, cumulative history of previous GxE interactions through the induction of epigenetic changes and immune memory (both lasting overtime). Following this conceptual approach, our understanding of the pathogenesis of chronic obstructive pulmonary disease (COPD) has changed dramatically. Traditionally believed to be a self-inflicted disease induced by tobacco smoking occurring in older men and characterized by an accelerated decline of lung function with age, now we understand that there are many other risk factors associated with COPD, that it occurs also in females and young individuals, that there are different lung function trajectories through life, and that COPD is not always characterized by accelerated lung function decline. In this paper we discuss how a GETomics approach to COPD may open new perspectives to better understand its relationship with exercise limitation and the ageing process.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Masculino , Feminino , Humanos , Idoso , Doença Pulmonar Obstrutiva Crônica/complicações , Envelhecimento/genética , Fatores de Risco , Pulmão , Espirometria/efeitos adversosRESUMO
The gut mounts secretory immunoglobulin A (SIgA) responses to commensal bacteria through nonredundant T cell-dependent (TD) and T cell-independent (TI) pathways that promote the establishment of mutualistic host-microbiota interactions. SIgAs from the TD pathway target penetrant bacteria, and their induction requires engagement of CD40 on B cells by CD40 ligand on T follicular helper cells. In contrast, SIgAs from the TI pathway bind a larger spectrum of bacteria, but the mechanism underpinning their production remains elusive. Here, we show that the intestinal TI pathway required CD40-independent B cell-activating signals from TACI, a receptor for the innate CD40 ligand-like factors BAFF and APRIL. TACI-induced SIgA responses targeted a fraction of the gut microbiota without shaping its overall composition. Of note, TACI was dispensable for TD induction of IgA in gut-associated lymphoid organs. Thus, BAFF/APRIL signals acting on TACI orchestrate commensal bacteria-specific SIgA responses through an intestinal TI program.