Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(9): 4831-4841, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071233

RESUMO

Hurricanes are recurring high-energy disturbances in coastal regions that change community structure and function of mangrove wetlands. However, most of the studies assessing hurricane impacts on mangroves have focused on negative effects without considering the positive influence of hurricane-induced sediment deposition and associated nutrient fertilization on mangrove productivity and resilience. Here, we quantified how Hurricane Irma influenced soil nutrient pools, vertical accretion, and plant phosphorus (P) uptake after its passage across the Florida Coastal Everglades in September 2017. Vertical accretion from Irma's deposits was 6.7 to 14.4 times greater than the long-term (100 y) annual accretion rate (0.27 ± 0.04 cm y-1). Storm deposits extended up to 10-km inland from the Gulf of Mexico. Total P (TP) inputs were highest at the mouth of estuaries, with P concentration double that of underlying surface (top 10 cm) soils (0.19 ± 0.02 mg cm-3). This P deposition contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 mo after Irma's impact, thus underscoring the interspecies differences in nutrient uptake. Mean TP loading rates were five times greater in southwestern (94 ± 13 kg ha-1 d-1) mangrove-dominated estuaries compared to the southeastern region, highlighting the positive role of hurricanes as a natural fertilization mechanism influencing forest productivity. P-rich, mineral sediments deposited by hurricanes create legacies that facilitate rapid forest recovery, stimulation of peat soil development, and resilience to sea-level rise.

2.
Sensors (Basel) ; 23(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37571453

RESUMO

In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region.


Assuntos
Tempestades Ciclônicas , Áreas Alagadas , Ecossistema , Florida , Florestas
3.
Glob Ecol Biogeogr ; 27(7): 760-786, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30147447

RESUMO

MOTIVATION: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. MAIN TYPES OF VARIABLES INCLUDED: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. SPATIAL LOCATION AND GRAIN: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). TIME PERIOD AND GRAIN: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. MAJOR TAXA AND LEVEL OF MEASUREMENT: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. SOFTWARE FORMAT: .csv and .SQL.

4.
Tree Physiol ; 42(4): 797-814, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35098315

RESUMO

We investigated how mangrove-island micro-elevation (i.e., habitat: center vs edge) affects tree physiology in a scrub mangrove forest of the southeastern Everglades. We measured leaf gas exchange rates of scrub Rhizophora mangle L. trees monthly during 2019, hypothesizing that CO2 assimilation (Anet) and stomatal conductance (gsw) would decline with increasing water levels and salinity, expecting more considerable differences at mangrove-island edges than centers, where physiological stress is greatest. Water levels varied between 0 and 60 cm from the soil surface, rising during the wet season (May-October) relative to the dry season (November-April). Porewater salinity ranged from 15 to 30 p.p.t., being higher at mangrove-island edges than centers. Anet maximized at 15.1 µmol m-2 s-1, and gsw was typically <0.2 mol m-2 s-1, both of which were greater in the dry than the wet season and greater at island centers than edges, with seasonal variability being roughly equal to variation between habitats. After accounting for season and habitat, water level positively affected Anet in both seasons but did not affect gsw. Our findings suggest that inundation stress (i.e., water level) is the primary driver of variation in leaf gas exchange rates of scrub mangroves in the Florida Everglades, while also constraining Anet more than gsw. The interaction between inundation stress due to permanent flooding and habitat varies with season as physiological stress is alleviated at higher-elevation mangrove-island center habitats during the dry season. Freshwater inflows during the wet season increase water levels and inundation stress at higher-elevation mangrove-island centers, but also potentially alleviate salt and sulfide stress in soils. Thus, habitat heterogeneity leads to differences in nutrient and water acquisition and use between trees growing in island centers versus edges, creating distinct physiological controls on photosynthesis, which likely affect carbon flux dynamics of scrub mangroves in the Everglades.


Assuntos
Rhizophoraceae , Ecossistema , Florida , Nutrientes , Fotossíntese/fisiologia , Rhizophoraceae/fisiologia , Solo , Árvores , Água
5.
Sci Total Environ ; 819: 152942, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007602

RESUMO

Nitrate (NO3-) and ammonium (NH4+) are reactive nitrogen (Nr) forms that can exacerbate eutrophication in coastal regions. NO3- can be lost to the atmosphere as N2 gas driven by direct denitrification, coupled nitrification-denitrification and annamox or retained within the ecosystems through conversion of NO3- to NH4+ via dissimilatory nitrate reduction to ammonium (DNRA). Denitrification and DNRA are competitive pathways and hence it is critical to evaluate their functional biogeochemical role. However, there is limited information about the environmental factors driving DNRA in oligohaline habitats, especially within deltaic regions where steep salinity gradients define wetland spatiotemporal distribution. Here we use the Isotope Pairing Technique to evaluate the effect of temperature (10, 20, 30 °C) and in situ soil/sediment organic matter (OM%) on total denitrification (Dtotal = direct + coupled nitrification) and DNRA rates in oligohaline forested/marsh wetlands soils and benthic sediment habitats at two sites representing prograding (Wax Lake Delta, WLD) and eroding (Barataria- Lake Cataouatche, BLC) deltaic stages in the Mississippi River Delta Plain (MRDP). Both sites receive MR water with high NO3- (>40 µM) concentrations during the year via river diversions. Denitrification rates were significantly higher (range: 18.0 ± 0.4-113.0 ± 10.6 µmol m-2 h-1) than DNRA rates (range: 0.7 ± 0.2-9.2 ± 0.3 µmol m-2 h-1). Therefore, DNRA represented on average < 10% of the total NO3- reduction (DNRA + Dtotal). Unlike denitrification, DNRA showed no consistent response to temperature. These results indicate that DNRA in wetland soils and benthic sediment is not a major nitrogen transformation in oligohaline regions across the MRDP regardless of wide range of OM% content in these eroding and prograding delta lobes.


Assuntos
Compostos de Amônio , Compostos de Amônio/metabolismo , Desnitrificação , Ecossistema , Nitratos/metabolismo , Nitrogênio , Áreas Alagadas
6.
Sci Rep ; 11(1): 13927, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230502

RESUMO

Mangroves are the most blue-carbon rich coastal wetlands contributing to the reduction of atmospheric CO2 through photosynthesis (sequestration) and high soil organic carbon (C) storage. Globally, mangroves are increasingly impacted by human and natural disturbances under climate warming, including pervasive pulsing tropical cyclones. However, there is limited information assessing cyclone's functional role in regulating wetlands carbon cycling from annual to decadal scales. Here we show how cyclones with a wide range of integrated kinetic energy (IKE) impact C fluxes in the Everglades, a neotropical region with high cyclone landing frequency. Using long-term mangrove Net Primary Productivity (Litterfall, NPPL) data (2001-2018), we estimated cyclone-induced litterfall particulate organic C (litter-POC) export from mangroves to estuarine waters. Our analysis revealed that this lateral litter-POC flux (71-205 g C m-2 year-1)-currently unaccounted in global C budgets-is similar to C burial rates (69-157 g C m-2 year-1) and dissolved inorganic carbon (DIC, 61-229 g C m-2 year-1) export. We proposed a statistical model (PULITER) between IKE-based pulse index and NPPL to determine cyclone's impact on mangrove role as C sink or source. Including the cyclone's functional role in regulating mangrove C fluxes is critical to developing local and regional climate change mitigation plans.

7.
Nat Commun ; 12(1): 4003, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183663

RESUMO

Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m). Mangroves on well-drained sites (83%) resprouted new leaves within one year after the storm. By contrast, in poorly-drained inland sites, we detected one of the largest mangrove diebacks on record (10,760 ha), triggered by Irma. We found evidence that the combination of low elevation (median = 9.4 cm asl), storm surge water levels (>1.4 m above the ground surface), and hydrologic isolation drove coastal forest vulnerability and were independent of tree height or wind exposure. Our results indicated that storm surge and ponding caused dieback, not wind. Tidal restoration and hydrologic management in these vulnerable, low-lying coastal areas can reduce mangrove mortality and improve resilience to future cyclones.


Assuntos
Avicennia/crescimento & desenvolvimento , Tempestades Ciclônicas , Ciclo Hidrológico/fisiologia , Conservação dos Recursos Naturais , Florida , Hidrologia , Lagoas , Imagens de Satélites , Áreas Alagadas
8.
Ecology ; 101(5): e02988, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958144

RESUMO

Long-term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long-term directional changes (sea-level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater-to-marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low-temperature anomalies) and long-term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long-term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low-temperature events (2010 and 2011) and a hurricane (2017). Long-term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1-50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long-term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems.


Assuntos
Ecossistema , Áreas Alagadas , Água Doce , Nutrientes , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA