Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Chembiochem ; : e202400396, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775269

RESUMO

The influence of alpha-cyclodextrin (αCD) on PEG crystallization is examined for a peptide-PEG conjugate, YYKLVFF-PEG3k comprising an amyloid peptide YYKLVFF linked to PEG with molar mass 3 kg mol-1. Remarkably, differential scanning calorimetry (DSC) and simultaneous synchrotron small-angle/wide-angle X-ray scattering (SAXS/WAXS) show that crystallization of PEG is suppressed by αCD, provided that the cyclodextrin content is sufficient. A hexagonal mesophase is formed instead. The αCD threading reduces the conformational flexibility of PEG, and hence suppresses crystallization. These results show that addition of cyclodextrins can be used to tune the crystallization of peptide-polymer conjugates and potentially other polymer/biomolecular hybrids.

2.
Biomacromolecules ; 25(2): 1205-1213, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204421

RESUMO

The conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C16-YKK or C16-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e., C16-Ykk and C16-Wkk. All four molecules self-assemble into spherical micelles which show structure factor effects in SAXS profiles due to intermicellar packing in aqueous solution. Consistent with micellar structures, the tripeptides in the coronas have a largely unordered conformation, as probed using spectroscopic methods. The molecules are found to have good cytocompatibility with fibroblasts at sufficiently low concentrations, although some loss of cell viability is noted at the highest concentrations examined (above the critical aggregation concentration of the lipopeptides, determined from fluorescence dye probe measurements). Preliminary tests also showed antimicrobial activity against both Gram-negative and Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Lipopeptídeos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lisina , Espalhamento a Baixo Ângulo , Difração de Raios X , Anti-Infecciosos/farmacologia , Micelas
3.
J Pept Sci ; 30(6): e3571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374800

RESUMO

The self-assembly in aqueous solution of three Fmoc-amino acids with hydrophobic (aliphatic or aromatic, alanine or phenylalanine) or hydrophilic cationic residues (arginine) is compared. The critical aggregation concentrations were obtained using intrinsic fluorescence or fluorescence probe measurements, and conformation was probed using circular dichroism spectroscopy. Self-assembled nanostructures were imaged using cryo-transmission electron microscopy and small-angle X-ray scattering (SAXS). Fmoc-Ala is found to form remarkable structures comprising extended fibril-like objects nucleating from spherical cores. In contrast, Fmoc-Arg self-assembles into plate-like crystals. Fmoc-Phe forms extended structures, in a mixture of straight and twisted fibrils coexisting with nanotapes. Spontaneous flow alignment of solutions of Fmoc-Phe assemblies is observed by SAXS. The cytocompatibility of the three Fmoc-amino acids was also compared via MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] mitochondrial activity assays. All three Fmoc-amino acids are cytocompatible with L929 fibroblasts at low concentration, and Fmoc-Arg shows cell viability up to comparatively high concentration (0.63 mM).


Assuntos
Aminoácidos , Fluorenos , Interações Hidrofóbicas e Hidrofílicas , Fluorenos/química , Aminoácidos/química , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos
4.
Chembiochem ; 24(19): e202300472, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37529857

RESUMO

Cyclodextrins are saccharide ring molecules which act as host cavities that can encapsulate small guest molecules or thread polymer chains. We investigate the influence of alpha-cyclodextrin (αCD) on the aqueous solution self-assembly of a peptide-polymer conjugate YYKLVFF-PEG3K previously studied by our group [Castelletto et al., Polym. Chem., 2010, 1, 453-459]. This conjugate comprises a designed amyloid-forming peptide YYKLVFF that contains the KLVFF sequence from Amyloid ß peptide, Aß16-20, along with two aromatic tyrosine residues to enhance hydrophobicity, as well as polyethylene glycol PEG with molar mass 3 kg mol-1 . The conjugate self-assembles into ß-sheet fibrils in aqueous solution. Here we show that complexation with αCD instead generates free-floating nanosheets in aqueous solution (with a ß-sheet structure). The nanosheets comprise a bilayer with a hydrophobic peptide core and highly swollen PEG outer layers. The transition from fibrils to nanosheets is driven by an increase in the number of αCD molecules threaded on the PEG chains, as determined by 1 H NMR spectroscopy. These findings point to the use of cyclodextrin additives as a powerful means to tune the solution self-assembly in peptide-polymer conjugates and potentially other polymer/biomolecular hybrids.

5.
Langmuir ; 39(24): 8516-8522, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289534

RESUMO

Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.


Assuntos
Lipídeo A , Lipopolissacarídeos , Lipopolissacarídeos/química , Escherichia coli/química , Glicosilação , Água/química , Micelas
6.
Langmuir ; 39(21): 7307-7316, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192174

RESUMO

A histidine-based amphiphilic peptide (P) has been found to form an injectable transparent hydrogel in phosphate buffer solution over a pH range from 7.0 to 8.5 with an inherent antibacterial property. It also formed a hydrogel in water at pH = 6.7. The peptide self-assembles into a nanofibrillar network structure which is characterized by high-resolution transmission electron microscopy, field-emission scanning electron microscopy, atomic force microscopy, small-angle X-ray scattering, Fourier-transform infrared spectroscopy, and wide-angle powder X-ray diffraction. The hydrogel exhibits efficient antibacterial activity against both Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). The minimum inhibitory concentration of the hydrogel ranges from 20 to 100 µg/mL. The hydrogel is capable of encapsulation of the drugs naproxen (a non-steroidal anti-inflammatory drug), amoxicillin (an antibiotic), and doxorubicin, (an anticancer drug), but, selectively and sustainably, the gel releases naproxen, 84% being released in 84 h and amoxicillin was released more or less in same manner with that of the naproxen. The hydrogel is biocompatible with HEK 293T cells as well as NIH (mouse fibroblast cell line) cells and thus has potential as a potent antibacterial and drug releasing agent. Another remarkable feature of this hydrogel is its magnification property like a convex lens.


Assuntos
Histidina , Staphylococcus aureus , Animais , Camundongos , Amoxicilina , Antibacterianos/química , Antibacterianos/farmacologia , Liberação Controlada de Fármacos , Escherichia coli , Hidrogéis/farmacologia , Hidrogéis/química , Naproxeno , Peptídeos
7.
Biomacromolecules ; 24(1): 213-224, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36520063

RESUMO

The conformation and self-assembly of four lipopeptides, peptide amphiphiles comprising peptides conjugated to lipid chains, in aqueous solution have been examined. The peptide sequence in all four lipopeptides contains the integrin cell adhesion RGDS motif, and the cytocompatibility of the lipopeptides is also analyzed. Lipopeptides have either tetradecyl (C14, myristyl) or hexadecyl (C16, palmitoyl) lipid chains and peptide sequence WGGRGDS or GGGRGDS, that is, with either a tryptophan-containing WGG or triglycine GGG tripeptide spacer between the bioactive peptide motif and the alkyl chain. All four lipopeptides self-assemble above a critical aggregation concentration (CAC), determined through several comparative methods using circular dichroism (CD) and fluorescence. Spectroscopic methods [CD and Fourier transform infrared (FTIR) spectroscopy] show the presence of ß-sheet structures, consistent with the extended nanotape, helical ribbon, and nanotube structures observed by cryogenic transmission electron microscopy (cryo-TEM). The high-quality cryo-TEM images clearly show the coexistence of helically twisted ribbon and nanotube structures for C14-WGGRGDS, which highlight the mechanism of nanotube formation by the closure of the ribbons. Small-angle X-ray scattering shows that the nanotapes comprise highly interdigitated peptide bilayers, which are also present in the walls of the nanotubes. Hydrogel formation was observed at sufficiently high concentrations or could be induced by a heat/cool protocol at lower concentrations. Birefringence due to nematic phase formation was observed for several of the lipopeptides, along with spontaneous flow alignment of the lyotropic liquid crystal structure in capillaries. Cell viability assays were performed using both L929 fibroblasts and C2C12 myoblasts to examine the potential uses of the lipopeptides in tissue engineering, with a specific focus on application to cultured (lab-grown) meat, based on myoblast cytocompatibility. Indeed, significantly higher cytocompatibility of myoblasts was observed for all four lipopeptides compared to that for fibroblasts, in particular at a lipopeptide concentration below the CAC. Cytocompatibility could also be improved using hydrogels as cell supports for fibroblasts or myoblasts. Our work highlights that precision control of peptide sequences using bulky aromatic residues within "linker sequences" along with alkyl chain selection can be used to tune the self-assembled nanostructure. In addition, the RGDS-based lipopeptides show promise as materials for tissue engineering, especially those of muscle precursor cells.


Assuntos
Lipopeptídeos , Nanoestruturas , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Adesão Celular , Sequência de Aminoácidos , Mioblastos , Dicroísmo Circular
8.
Biomacromolecules ; 24(11): 5403-5413, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37914531

RESUMO

There has been considerable interest in peptides in which the Fmoc (9-fluorenylmethoxycarbonyl) protecting group is retained at the N-terminus, since this bulky aromatic group can drive self-assembly, and Fmoc-peptides are biocompatible and have applications in cell culture biomaterials. Recently, analogues of new amino acids with 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting groups have been developed for water-based peptide synthesis. Here, we report on the self-assembly and biocompatibility of Smoc-Ala, Smoc-Phe and Smoc-Arg as examples of Smoc conjugates to aliphatic, aromatic, and charged amino acids, respectively. Self-assembly occurs at concentrations above the critical aggregation concentration (CAC). Cryo-TEM imaging and SAXS reveal the presence of nanosheet, nanoribbon or nanotube structures, and spectroscopic methods (ThT fluorescence circular dichroism and FTIR) show the presence of ß-sheet secondary structure, although Smoc-Ala solutions contain significant unaggregated monomer content. Smoc shows self-fluorescence, which was used to determine CAC values of the Smoc-amino acids from fluorescence assays. Smoc fluorescence was also exploited in confocal microscopy imaging with fibroblast cells, which revealed its uptake into the cytoplasm. The biocompatibility of these Smoc-amino acids was found to be excellent with zero cytotoxicity (in fact increased metabolism) to fibroblasts at low concentration.


Assuntos
Aminoácidos , Água , Aminoácidos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/química
9.
Soft Matter ; 19(42): 8264-8273, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869972

RESUMO

Self-assembled supramolecular hydrogels offer great potential as biomaterials and drug delivery systems. Specifically, peptide-based multicomponent hydrogels are promising materials due to their advantage that their mechanical and physical properties can be tuned to enhance their functionalities and broaden their applications. Herein, we report two-component assembly and formation of hydrogels containing inexpensive complementary anionic, BUVV-OH (A), and cationic, KFFC12 (B), peptide amphiphiles. Individually, neither of these components formed a hydrogel, while mixtures with compositions 1 : 1, 1 : 2, and 2 : 1 (molar ratio) as A : B show hydrogel formation (Milli-Q water, at pH = 6.79). These hydrogels displayed a good shear-thinning behaviour with different mechanical stabilities and nano-fibrous network structures. The 1 : 1 hydrogel shows good cell viability for human embryonic kidney (HEK-293) cells and CHO cells indicating its non-cytotoxicity. The biocompatible, thixotropic 1 : 1 hydrogel with a nanofiber network structure shows the highest mechanical strength with a storage modulus of 3.4 × 103 Pa. The hydrogel is able to encapsulate drugs including antibiotics amoxicillin and rifampicin, and anticancer drug doxorubicin, and it exhibits sustainable release of 76%, 70%, and 81% respectively in vitro after 3 days. The other two mixtures (composition 1 : 2 and 2 : 1) are unable to form a hydrogel when they are loaded with these drugs. Interestingly, it is noticed that with an increase in concentration, the mechanical strength of a 1 : 1 hydrogel is significantly enhanced, showing potential that may act as a scaffold for tissue engineering. The two-component gel offers tunable mechanical properties, thixotropy, injectability, and biocompatibility and has great potential as a scaffold for sustained drug release and tissue engineering.


Assuntos
Hidrogéis , Peptídeos , Animais , Cricetinae , Humanos , Hidrogéis/química , Liberação Controlada de Fármacos , Cricetulus , Células HEK293
10.
Soft Matter ; 19(26): 4869-4879, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37334565

RESUMO

Bradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils. Fluorescence assays hint that BK is more efficient at displacing minor-groove binders in comparison with base-intercalant dyes, thus, suggesting that interaction with DNA strands is mediated by electrostatic attraction between cationic groups at BK and the high negative electron density of minor-grooves. Our data also revealed an intriguing finding that BK-DNA complexes can induce a limited uptake of nucleotides by HEK-293t cells, which is a feature that has not been previously reported for BK. Moreover, we observed that the complexes retained the native bioactivity of BK, including the ability to modulate Ca2+ response into endothelial HUVEC cells. Overall, the findings presented here demonstrate a promising strategy for the fabrication of fibrillar structures of BK using DNA as a template, which keep bioactivity features of the native peptide and may have implications in the development of nanotherapeutics for hypertension and related disorders.


Assuntos
Bradicinina , COVID-19 , Humanos , Bradicinina/química , Bradicinina/farmacologia , Peptídeos , Transdução de Sinais , Células Endoteliais
11.
Langmuir ; 38(11): 3434-3445, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35274959

RESUMO

Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.


Assuntos
Hidrogéis , Nanoestruturas , Amiloide , Animais , Células HeLa , Humanos , Hidrogéis/química , Camundongos , Morfogênese , Células NIH 3T3 , Nanoestruturas/toxicidade , Peptídeos/química , Água
12.
Langmuir ; 37(30): 9170-9178, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34292730

RESUMO

The peptide angiotensin-converting enzyme inhibitors captopril and lisinopril are unexpectedly shown to exhibit critical aggregation concentration (CAC) behavior through measurements of surface tension, electrical conductivity, and dye probe fluorescence. These three measurements provide similar values for the CAC, and there is also evidence from circular dichroism spectroscopy for a possible conformational change in the peptides at the same concentration. Cryogenic transmission electron microscopy indicates the formation of micelle-like aggregates above the CAC, which can thus be considered a critical micelle concentration, and the formation of aggregates with a hydrodynamic radius of ∼6-7 nm is also evidenced by dynamic light scattering. We also used synchrotron radiation X-ray diffraction to determine the single-crystal structure of captopril and lisinopril. Our results improve the accuracy of previous data reported in the literature, obtained using conventional X-ray sources. We also studied the structure of aqueous solutions containing captopril or lisinopril at high concentrations. The aggregation may be driven by intermolecular interactions between the proline moiety of captopril molecules or between the phenylalanine moiety of lisinopril molecules.


Assuntos
Captopril , Lisinopril , Inibidores da Enzima Conversora de Angiotensina
13.
Soft Matter ; 17(11): 3096-3104, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33598669

RESUMO

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties. Peptide Arg3-Leu12 (R3L12) forms a network of peptide nanotubes at pH 9 and below. These are associated with α-helical conformation in a "cross-α" nanotube structure, in which peptide dimers lie perpendicular to the nanotube axis, with arginine coated inner and outer nanotube walls. In contrast, this peptide forms decorated vesicular aggregates at higher pH values, close to the pKa of the arginine residues. These structures are associated with a loss of α-helical order as detected through X-ray scattering, circular dichroism and FTIR spectroscopy, the latter technique also revealing a loss of ordering of leucine side chains. This suggests a proposed model for the decorated or patchy vesicular structures that comprises disordered peptide as the matrix of the membrane, with small domains of ordered peptide dimers forming the minority domains. We ascribe this to a lipid-raft like phase separation process, due to conformational disordering of the leucine hydrophobic chains. The observation of the self-assembly of a simple surfactant-like peptide into these types of nanostructure is remarkable, and peptide R3L12 shows unique pH-dependent morphological and conformational behaviour, with the potential for a range of future applications.


Assuntos
Nanoestruturas , Tensoativos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Peptídeos , Conformação Proteica em alfa-Hélice
14.
Langmuir ; 36(43): 12942-12953, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078952

RESUMO

A dipeptide-based synthetic amphiphile bearing a myristyl chain has been found to form hydrogels in the pH range 6.9-8.5 and organogels in various organic solvents including petroleum ether, diesel, kerosene, and petrol. These organogels and hydrogels have been thoroughly studied and characterized by different techniques including high-resolution transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and rheology. It has been found that the xerogel obtained from the peptide gelator can trap various toxic organic dyes from wastewater efficiently. Moreover, the hydrogel has been used to remove toxic heavy metal ions Pb2+ and Cd2+ from wastewater. Dye adsorption kinetics has been studied, and it has been fitted by using the Freundlich isotherm equation. Interestingly, the gelator amphiphilic peptide gels fuel oil, kerosene, diesel, and petrol in a biphasic mixture of salt water and oil within a few seconds. This indicates that these gels not only may find application in oil spill recovery but also can be used to remove toxic organic dyes and hazardous toxic metal ions from wastewater. Moreover, the gelator can be recycled several times without significant loss of activity, suggesting the sustainability of this new gelator. This holds future promise for environmental remediation by using peptide-based gelators.

15.
Langmuir ; 36(11): 2767-2774, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32131599

RESUMO

Morphological, spectroscopic, and scattering studies of the self-assembly and aggregation of mixtures of [RF]4 and P[RF]4 peptides (where R = arginine; F = phenylalanine; P = proline), in solution and as hydrogels, were performed to obtain information about polymorphism. CD data confirmed a ß-sheet secondary structure in aqueous solution, and TEM images revealed nanofibers with diameters of ∼10 nm and micrometer lengths. SAXS curves were fitted using a mass fractal-component and a long cylinder shell form factor for the liquid samples, and only a long cylinder shell form factor for the gels. Increasing the P[RF]4 content in the systems leads to a reduction in cylinder radius and core scattering density, suggesting an increase in packing of the peptide molecules; however, the opposite effect is observed for the gels, where the scattering density is higher in the shell for the systems containing higher P[RF]4 content. These compounds show potential as catalysts in the asymmetric aldol reactions, with cyclohexanone and p-nitrobenzaldehyde in aqueous media. A moderate conversion (36.9%) and a good stereoselectivity (69:31) were observed for the system containing only [RF]4. With increasing P[RF]4 content, a considerable decrease of the conversion was observed, suggesting differences in the self-assembly and packing factor. Rheological measurements were performed to determine the shear moduli for the soft gels.

16.
Soft Matter ; 16(20): 4746-4755, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32329496

RESUMO

Penetratin is a short Trojan peptide that attracts great interest in biomedical research for its capacity to translocate biological membranes. Herein, we study in detail both self-assembly and intracellular delivery of DNA by the heptamer KIWFQNR, a truncated peptide derived from Penetratin. This shortened sequence possesses a unique design with bolaamphiphilic characteristics that preserves the longest noncationic amino acid portion found in Penetratin. These features convey amphipathicity to assist self-assembly and make it a suitable model for exploring the role of hydrophobic residues for peptide interaction and cell uptake. We show that the fragment forms peptiplexes (i.e., peptide-DNA complexes), and aggregates into long nanofibers with clear ß-sheet signature. The supramolecular structure of nanofibers is likely composed of DNA cores surrounded by a peptide shell to which the double helix behaves as a template and induces fibrillization. A nucleation and growth mechanism proceeding through liquid-liquid phase separation of coacervates is proposed for describing the self-assembly of peptiplexes. We also demonstrate that peptiplexes deliver double-stranded 200 bp DNA into HeLa cells, indicating its potential for preparing non-viral vectors for oligonucleotides through noncovalent strategies. Since the main structural features of native Penetratin are conserved in this simpler fragment, our findings also highlight the role of uncharged amino acids for structuration, and thus for the ability of Penetratin to cross cell membranes.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , DNA/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Peptídeos Penetradores de Células/química , Citosol/metabolismo , DNA/química , Endocitose , Células HeLa , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química
17.
Langmuir ; 35(5): 1302-1311, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30056711

RESUMO

We study the self-assembly of arginine-capped bolaamphiphile peptide RA3R (A: alanine, R: arginine) together with its binding to model membranes and its cytotoxicity and antimicrobial activity. Anionic 2-oleoyl-1-palmitoyl- sn-glycero-3-phospho-rac-(1-glycerol) sodium salt/2-oleoyl-1-palmitoyl- sn-glycero-3-phosphoethanolamine (POPG/POPE) vesicles and zwitterionic 1,2-dioleoyl- sn-glycero-3-phosphocholine/2-oleoyl-1-palmitoyl- sn-glycero-3-phosphocholine (POPC/DOPC) vesicles are used as model membranes to mimic bacterial and mammalian cell membranes, respectively. We show that RA3R adopts a polyproline-II collagen-like conformation in water. Binding of RA3R to POPG/POPE vesicles induces a strong correlation between the lipid bilayers, driven by RA3R/POPG attractive electrostatic interaction together with a shift of the intramolecular POPE zwitterionic interaction toward an attractive electrostatic interaction with the RA3R. Populations of RA3R/POPG/POPE vesicles comprise different bilayer spacings, dA and dB, controlled by the conformation of the lipid chains corresponding to the Lß (gel-like) and Lα (liquid-crystal) phases, respectively. Cryo-TEM images reveal the presence of vesicles with no internal structure, compartmentalized thin-wall vesicles, or multilayer vesicles with uncorrelated layers and compartmentalization depending on the RA3R/POPG/POPE composition. In contrast, the interaction of RA3R with multilamellar POPC/DOPC vesicles leads to the decorrelation of the lipid bilayers. RA3R was tolerated by skin fibroblast cells for a concentration up to 0.01 wt %, while 0.25 wt % RA3R proved to be an efficient antibacterial agent against Gram-positive bacteria L. monocytogenes. Our results highlight the ability of RA3R to distinguish between bacterial and mammalian cells and establish this peptide as a candidate to reduce the proliferation of L. monocytogenes bacteria.


Assuntos
Antibacterianos/farmacologia , Glicerofosfolipídeos/química , Bicamadas Lipídicas/química , Oligopeptídeos/farmacologia , Tensoativos/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Linhagem Celular , Humanos , Listeria monocytogenes/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/toxicidade , Ligação Proteica , Conformação Proteica , Tensoativos/química , Tensoativos/toxicidade
18.
Org Biomol Chem ; 17(18): 4543-4553, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30994696

RESUMO

We investigate the self-assembly of a palmitoylated (C16-chain at the N terminus) peptide fragment in comparison to the unlipidated peptide EELNRYY, a fragment of the gut hormone peptide PYY3-36. The lipopeptide C16-EELNRYY shows remarkable pH-dependent self-assembly above measured critical aggregation concentrations, forming fibrils at pH 7, but micelles at pH 10. The parent peptide does not show self-assembly behaviour. The lipopeptide forms hydrogels at sufficiently high concentration at pH 7, the dynamic mechanical properties of which were measured. We also show that the tyrosine functionality at the C terminus of EELNRYY can be used to enzymatically produce the pigment melanin. The enzyme tyrosinase oxidises tyrosine into 3,4-dihydroxyphenylalanine (DOPA), DOPA-quinone and further products, eventually forming eumelanin. This is a mechanism of photo-protection in the skin, for this reason controlling tyrosinase activity is a major target for skin care applications and EELNRYY has potential to be developed for such uses.


Assuntos
Lipopeptídeos/química , Melaninas/síntese química , Monofenol Mono-Oxigenase/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Peptídeo YY/química , Sequência de Aminoácidos , Corantes Fluorescentes/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Lipopeptídeos/metabolismo , Micelas , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/metabolismo , Conformação Proteica em Folha beta , Multimerização Proteica , Pirenos/química , Tirosina/química
19.
Biomacromolecules ; 19(11): 4320-4332, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230821

RESUMO

The gastric peptide hormone human PYY3-36 is a target for the development of therapeutics, especially for treatment of obesity. The conformation and aggregation behavior of PEGylated and lipidated derivatives of this peptide are examined using a combination of fluorescence dye assays, circular dichroism (CD) spectroscopy, analytical ultracentrifugation (AUC) measurements, small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM). The behavior of two PYY3-36 derivatives lipidated (with octyl chains) in different positions is compared to that of two derivatives with PEG attached at different residues and to that of the native peptide. We find that, unexpectedly, PYY3-36 forms amyloid fibril structures above a critical aggregation concentration. Formation of these structures is suppressed by PEGylation or lipidation. PEGylation significantly reduces the (reversible) loss of α-helix content observed on heating PYY3-36. The PEG conjugates form mainly monomeric structures in solution- coiled-coil formation, and other aggregation presumably being sterically hindered by swollen PEG chains. However, some small aggregates are detected by AUC. In complete contrast, both of the two lipidated peptides show the formation of spherical micelle-like structures which are small oligomeric aggregates. Our findings show that PEGylation and lipidation are complementary strategies to tune the conformation and aggregation of the important gastric peptide hormone human PYY3-36.


Assuntos
Lipídeos/química , Peptídeo YY/química , Peptídeo YY/metabolismo , Polietilenoglicóis/química , Multimerização Proteica , Estrutura Secundária de Proteína , Humanos
20.
Biomacromolecules ; 19(7): 2782-2794, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29738229

RESUMO

The activity of antimicrobial peptides stems from their interaction with bacterial membranes, which are disrupted according to a number of proposed mechanisms. Here, we investigate the interaction of a model antimicrobial peptide that contains a single arginine residue with vesicles containing model lipid membranes. The surfactant-like peptide Ala6-Arg (A6R) is studied in the form where both termini are capped (CONH-A6R-NH2, capA6R) or uncapped (NH2-A6R-OH, A6R). Lipid membranes are selected to correspond to model anionic membranes (POPE/POPG) resembling those in bacteria or model zwitterionic membranes (POPC/DOPC) similar to those found in mammalian cells. Viable antimicrobial agents should show activity against anionic membranes but not zwitterionic membranes. We find, using small-angle X-ray scattering (SAXS) and cryogenic-TEM (transmission electron microscopy) that, uniquely, capA6R causes structuring of anionic membranes due to the incorporation of the peptide in the lipid bilayer with peptide ß-sheet conformation revealed by circular dichroism spectroscopy (CD). There is a preferential interaction of the peptide with POPG (which is the only anionic lipid in the systems studied) due to electrostatic interactions and bidentate hydrogen bonding between arginine guanidinium and lipid phosphate groups. At a certain composition, this peptide leads to the remarkable tubulation of zwitterionic phosphatidylcholine (PC) vesicles, which is ascribed to the interaction of the peptide with the outer lipid membrane, which occurs without penetration into the membrane. In contrast, peptide A6R has a minimal influence on the anionic lipid membranes (and no ß-sheet peptide structure is observed) but causes thinning (lamellar decorrelation) of zwitterionic membranes. We also investigated the cytotoxicity (to fibroblasts) and antimicrobial activity of these two peptides against model Gram positive and Gram negative bacteria. A strong selective antimicrobial activity against Gram positive Listeria monocytogenes, which is an important food-borne pathogen, is observed for capA6R. Peptide A6R is active against all three studied bacteria. The activity of the peptides against bacteria and mammalian cells is related to the specific interactions uncovered through our SAXS, cryo-TEM, and CD measurements. Our results highlight the exquisite sensitivity to the charge distribution in these designed peptides and its effect on the interaction with lipid membranes bearing different charges, and ultimately on antimicrobial activity.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Tensoativos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Listeria monocytogenes/efeitos dos fármacos , Fosfatidilcolinas/química , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA